Table 15. Human pharmacology of nicotine

| Primary effects*                                                                                                                                                              | Withdrawal symptoms                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Pleasure                                                                                                                                                                      | Irritability, restlessness                          |
| Arousal, enhanced vigilance                                                                                                                                                   | Drowsiness                                          |
| Improved task performance                                                                                                                                                     | Difficulty concentrating, impaired task performance |
| Relief of anxiety                                                                                                                                                             | Anxiety                                             |
| Reduced hunger                                                                                                                                                                | Hunger                                              |
| Body weight reduction                                                                                                                                                         | Weight gain                                         |
| •                                                                                                                                                                             | Sleep disturbance                                   |
|                                                                                                                                                                               | Cravings or strong urges for nicotine               |
| Electroencephalogram desynchronization                                                                                                                                        |                                                     |
| Increased circulating levels of catecholamines, vasopressin, growth hormone, adrenocorticotropic hormone (ACTH), cortisol, prolactin, beta-endorphin Increased metabolic rate | Decreased catecholamine excretion <sup>†</sup>      |
| Lipolysis, increased free fatty acids                                                                                                                                         |                                                     |
| Heart rate acceleration Cutaneous and coronary vasoconstriction Increased cardiac output Increased blood pressure                                                             | Heart rate slowing <sup>†</sup>                     |
| Skeletal muscle relaxation                                                                                                                                                    |                                                     |

<sup>\*</sup>Some of these effects are related in part to relief of withdrawal symptoms.

Source: Benowitz 1992a.

Genetic differences in the number of nicotinic receptors and pharmacologic responses to nicotine have been well demonstrated in animals (Marks et al. 1991). Genetic differences in pharmacologic responses to nicotine could underlie different susceptibilities to nicotine addiction, as appears to be the case for certain types of alcohol addiction (Hughes 1986; Cloninger 1987; Carmelli et al. 1992). Genetic susceptibility may vary by ancestry of origin (for example, sickle cell disease and African American ancestry). Genetic differences in nicotine responsiveness associated with ancestry of origin remain to be explored.

#### Tolerance, Withdrawal, and Addictive Tobacco Use

With prolonged or repeated exposure to nicotine, neurologic changes (neuroadaptation) occur. In animals, chronic nicotine exposure results in an increased number of nicotinic receptors in the brain (Marks et al. 1985). During the course of these changes, the

smoker develops more brain nicotinic receptors and an increased tolerance to the various effects of nicotine. For example, previous studies have shown that at autopsy, the number of nicotinic receptors was greater in the brains of cigarette smokers than in those of nonsmokers (Benwell et al. 1988). Smokers develop substantial tolerance to the behavioral arousal and cardiovascular effects of nicotine in the course of a single day (Benowitz et al. 1989b). They can regain sensitivity to the effects of nicotine, at least in part, after overnight abstinence from smoking.

As a consequence of these neurologic changes, nicotine withdrawal symptoms appear when nicotine use is abruptly stopped (Table 16) (Hughes and Hatsukami 1992). Withdrawal symptoms include restlessness, irritability, anxiety, drowsiness, impatience, confusion, impaired concentration, and depression (Hughes et al. 1990). Some abstaining smokers gain weight, and others have impaired performance measures, such as reaction time. Many abstaining

<sup>&</sup>lt;sup>†</sup>May represent a return to baseline rather than true withdrawal.

Table 16. Incidence\* of nicotine withdrawal symptoms, United States

| Symptom                  | Clinic<br>attendees<br>(%) | Self-<br>quitters<br>(%) |  |  |
|--------------------------|----------------------------|--------------------------|--|--|
| Anxiety                  | 87                         | 49                       |  |  |
| Irritability             | 80                         | 38                       |  |  |
| Difficulty concentrating | 73                         | 43                       |  |  |
| Restlessness             | 71                         | 46                       |  |  |
| Hunger                   | 67                         | 53                       |  |  |
| Craving                  | 62                         | 37                       |  |  |
| Nocturnal awakenings     | 24                         | 39                       |  |  |
| Depression               | NA                         | 31                       |  |  |

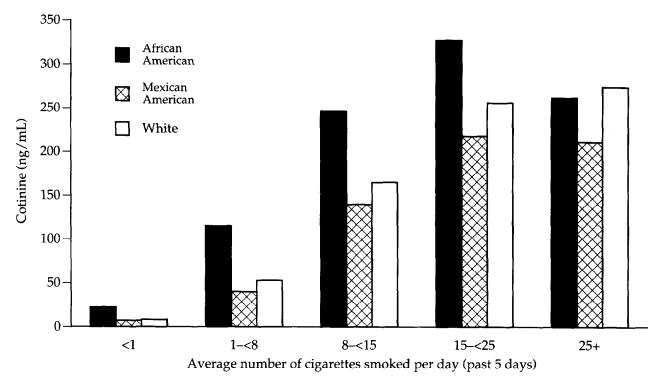
\*Percentage of subjects with postcessation ratings greater than precessation ratings 2 days after they quit smoking.

NA = data not available.

Sources: Hughes 1992; Hughes and Hatsukami 1992. Adapted from Hughes and Hatsukami 1992.

smokers have a strong craving to smoke a cigarette. Most of the withdrawal symptoms reach maximal intensity 24 to 48 hours after cessation and gradually diminish in intensity within three to four weeks (Gross and Stitzer 1989; Hughes et al. 1990), although some individuals experience longer lasting symptoms (USDHHS 1988). These symptoms, which also appear after quitting the use of smokeless tobacco (CDC 1994) or nicotine gum, are relieved following the administration of nicotine—a strong indication that the withdrawal symptoms are related to the effects of nicotine.

The degree of nicotine dependence is determined in part by the level of nicotine that accumulates in smokers. In general, the level of accumulated nicotine is proportional to the number of cigarettes smoked per day. Consistent with the concept of a daily tolerance-withdrawal cycle, a short duration of time between awakening and smoking the first cigarette is associated with a high degree of nicotine dependence (Heatherton et al. 1989). This presumably reflects an effort to relieve nicotine withdrawal symptoms. These two factors—the number of cigarettes smoked per day and the amount of time from awakening to smoking the first cigarette—are commonly used to assess the severity of nicotine dependence (Fagerström and Schneider 1989).


#### Level of Addiction

Assessments of the level of nicotine addiction help predict responses to nicotine and serve as a potential guideline for therapeutic approaches to smoking cessation. The professionals who design strategies to prevent tobacco use and treat persons with nicotine addiction need to understand the high level of addiction among cigarette smokers and to appreciate the group-specific cultural characteristics of the behavior and smokers' individual reasons for initiating, continuing, and quitting tobacco use (Krasnegor 1979; Grunberg and Acri 1991). The most widely used indexes of addiction levels are the number of cigarettes smoked per day, the serum nicotine or cotinine level, the Fagerström dependence questionnaire (Fagerström and Schneider 1989), and the diagnostic criteria of the DSM-IV<sup>TM</sup> (APA 1994). The Fagerström dependence questionnaire incorporates questions about the number of cigarettes smoked per day, the time between awakening and smoking the first cigarette of the day, as well as episodes in which the smoker lost control of smoking behavior (such as smoking at inappropriate times or in inappropriate places). The prevalence of smoking cessation—and conversely, the number of unsuccessful quit attempts—also reflects the level of addiction, at least in part. The brand of cigarette smoked might be expected to correlate with a person's level of dependence because high-yield cigarettes nominally deliver more nicotine per cigarette. However, in large surveys of smokers, only a modest relationship was found between yield (measured by a smoking machine) and levels of nicotine or cotinine in the body (Benowitz et al. 1986; Coultas et al. 1993). This is because people smoke differently than machines that are set to a standardized testing protocol that is, they are able to take more frequent or deeper puffs, to smoke each cigarette more completely, to smoke more cigarettes per day, and to block ventilation holes in the cigarettes (Henningfield et al. 1994; NCI 1996a).

#### Racial/Ethnic Differences in Nicotine Metabolites

Evidence suggests that African Americans have higher cotinine levels per reported number of cigarettes smoked per day than whites (Wagenknecht et al. 1990; English et al. 1994; Clark et al. 1996a) (Figure 5). In Figure 5, the racial/ethnic minority group comparisons among those who smoked 25 or more cigarettes per day may be somewhat biased, because the average daily consumption for whites was substantially higher than that for African Americans and Mexican

Figure 5. Serum cotinine levels by number of cigarettes smoked daily for African Americans, Mexican Americans, and whites, National Health and Nutrition Examination Survey, United States, 1988–1991



Note: N = 2,136.

Source: National Center for Health Statistics, public use data tape, 1997.

Americans. Clark and colleagues (1996b) found no evidence that underreporting of daily cigarette consumption occurred more often in African American than in white smokers.

One possible explanation for the higher cotinine level among African Americans is that African Americans may absorb more nicotine from their cigarettes than whites (Benowitz et al. 1995). Greater absorption could result from several factors, including groupspecific patterns of smoking behavior (i.e., more and deeper puffs per cigarette or longer retention of tobacco smoke in the lungs) (Benowitz et al. 1995). Additionally, menthol in cigarettes may facilitate absorption of cigarette smoke constituents (Jarvik et al. 1994; McCarthy et al. 1995; Clark et al. 1996a). However, the fact that African Americans smoke menthol cigarettes more commonly than whites do explains only a small percentage of their higher levels of cigarette

smoke constituents (Wagenknecht et al. 1992; Ahijevych et al. 1996; Clark et al. 1996a).

Racial/ethnic differences in nicotine metabolism could influence the development of nicotine addiction. Several researchers have suggested that African Americans might metabolize cotinine differently than whites (Pattishall et al. 1985; Wagenknecht et al. 1990; English et al. 1994; Benowitz et al. 1995). Results of studies of nonsmokers support this hypothesis (Pattishall et al. 1985; Wagenknecht et al. 1993; Crawford et al. 1994; Knight et al. 1996; Pirkle et al. 1996). Most of these investigations (Pattishall et al. 1985; Crawford et al. 1994; Knight et al. 1996; Pirkle et al. 1996) reported that African Americans had higher cotinine levels than whites, even after ETS exposure and other factors were taken into account. These findings may be limited by the fact that no measures of tobacco smoke or nicotine concentrations in the air were obtained.

Based on a preliminary report of data for 40 African Americans and 39 white controls matched for age, gender, and cigarette consumption, Benowitz and colleagues (1995) reported that the disposition kinetics of nicotine were similar for both groups. For example, the percentage conversion of nicotine to cotinine was similar across groups. However, the clearance of cotinine was significantly lower for African Americans than for whites. Additionally, the average estimated intake of nicotine per cigarette smoked was 1.41 mg in African Americans and 1.09 mg in whites. This difference is of borderline statistical significance (p = 0.07) (Benowitz et al. 1995). African Americans took in 28 percent more nicotine per cigarette than would have been expected based on FTC yields; whites took in 9 percent more nicotine per cigarette than would have been expected based on FTC yields (Pérez-Stable et al., unpublished data).

Investigators have also found cotinine levels in African Americans that were higher than expected for the number of cigarettes smoked. Ahijevych and Wewers (1993) found an average salivary cotinine level of 402 ng/mL in African American women who smoked an average of 15 cigarettes per day. This level is much higher than the expected level found in other persons who smoked the same number of cigarettes. Clark and colleagues (1996b) reported that African American smokers smoked longer cigarettes and more of each cigarette than white smokers. However, because they smoked fewer cigarettes each day, African Americans smoked fewer total daily millimeters of cigarettes. Among young adults in the CARDIA study, African Americans (48 percent) were more likely than whites (36 percent) to report that a substantial amount of their cigarette burned without their smoking it (Wagenknecht et al. 1992). Also, in a study of 33 African American and white women, Ahijevych and colleagues (1996) did not find a racial/ethnic difference in total puff volume (per cigarette).

Pérez-Stable and colleagues (1990) reported that among Mexican Americans who were part of the 1982–1984 HHANES, cotinine levels were unexpectedly high in smokers reporting low levels of cigarette consumption. Higher-than-expected cotinine levels may reflect underreporting of smoking by Hispanics, but the possibility also exists that Hispanics absorb or metabolize nicotine differently than whites (Henningfield et al. 1990). However, recent data from NHANES III (Figure 5) indicate that, among persons who smoked at least one cigarette daily, Mexican American smokers had lower serum cotinine levels in each consumption category than African American and white smokers.

# Racial/Ethnic Differences in Self-Reported Nicotine Dependence

The use of questionnaires to systematically investigate racial/ethnic differences in nicotine dependence has been limited. Data from the 1987 NHIS (Table 17) show that African Americans were more likely than whites and Hispanics to report smoking their first cigarette of the day within 10 minutes of awakening, although these differences tended to disappear among those who reported smoking 25 or more cigarettes per day (NCHS, public use data tapes, 1987). Telephone survey data on smoking, collected as part of the Community Intervention Trial (COMMIT) for Smoking Cessation, also indicate that African Americans were more likely than whites to smoke within 10 minutes of awakening (an indicator of nicotine dependence [USDHHS 1988]), even after the researchers controlled for the number of cigarettes smoked per day (Royce et al. 1993). Conversely, Andreski and Breslau (1993) conducted a study that used the dependence criteria of the DSM-III<sup>TM</sup> and found that, compared with African Americans, greater proportions of whites had symptoms of nicotine dependence. The researchers randomly selected 1,200 adults aged 21-30 years from the members of a health maintenance organization in southeast Michigan. Overall, 22.6 percent of the whites who smoked met the criteria for nicotine dependence, compared with 9.3 percent of the African Americans who smoked. Nicotine dependence was found to have a significant association with psychological distress, as measured by the Brief Symptom Inventory for smokers in both groups. Poor physical health was also associated with nicotine dependence, and this relationship was stronger among African Americans than among whites.

Kandel and colleagues (1997) used questions from the 1991, 1992, and 1993 (combined) National Household Surveys on Drug Abuse (NHSDAs) to develop a proxy measure of DSM-IVTM (APA 1994) dependence on various substances (including nicotine). Respondents were asked, for example, if they felt unable to reduce their use when they tried to cut down, experienced withdrawal symptoms (described in this survey as feeling sick because they stopped or cut down), felt that they needed or were dependent on the substance, and felt the need for larger amounts to obtain the same effect. This study used responses from 87,915 persons aged 12 years and older. Among persons who smoked during the previous year, whites were more likely than African Americans, Hispanics, and other racial/ethnic minority group members to be rated as dependent on nicotine. The authors

Table 17. Percentage of adult smokers\* who reported that they smoked their first cigarette within 10 minutes and within 30 minutes of awakening, by race/ethnicity and number of cigarettes smoked per day, National Health Interview Survey, United States, 1987

| Characteristic   | African Americans |                  | Hispanics |      | Whites      |     |
|------------------|-------------------|------------------|-----------|------|-------------|-----|
|                  | %                 | ±CI <sup>†</sup> | %         | ±CI  | <del></del> | ±CI |
| 1-14 cigarettes  |                   |                  | ""        |      |             |     |
| ≤10 minutes      | 21.9              | 4.9              | 11.3      | 5.3  | 11.1        | 2.1 |
| ≤30 minutes      | 39.2              | 5.5              | 26.2      | 7.3  | 27.1        | 3.0 |
| 15–24 cigarettes |                   |                  |           |      |             |     |
| ≤10 minutes      | 51.7              | 8.4              | 32.7      | 10.3 | 36.9        | 2.4 |
| ≤30 minutes      | 77.6              | 5.9              | 61.3      | 10.3 | 68.4        | 2.5 |
| ≥25 cigarettes   |                   |                  |           |      |             |     |
| ≤10 minutes      | 69.0              | 18.0             | 63.3      | 17.2 | 61.9        | 3.0 |
| ≤30 minutes      | 95.6              | 3.6              | 93.4      | 8.2  | 88.8        | 1.8 |

<sup>\*</sup>Persons who reported smoking at least 100 cigarettes in their lives and who reported at the time of survey that they currently smoked.

Source: National Center for Health Statistics, public use data tapes, 1987.

acknowledged that their study was limited somewhat because the NHSDA indicators of dependence were not based on diagnostic interviews designed specifically to assess  $DSM\text{-}IV^{\text{TM}}$  criteria. Nevertheless, the finding that whites were more likely to exhibit indicators of dependence than African Americans was consistent with that of Andreski and Breslau (1993). Further research is needed to resolve the apparent discrepancy for African Americans between studies that are based on the number of minutes to the first cigarette of the day and those that are based on  $DSM\text{-}III^{\text{TM}}$  or  $DSM\text{-}IV^{\text{TM}}$  criteria for dependence.

Navarro (1996) used population-based data from the 1990 California Tobacco Survey on white (n = 70,997) and Hispanic (n = 28,000) adults. Her analyses indicated that whites were significantly more likely than Hispanics to smoke on a daily basis and to smoke at least 15 cigarettes each day. Furthermore, among the daily smokers, whites were more likely than Hispanics to smoke a cigarette within 30 minutes of awakening. Among Hispanics, those who were less acculturated (i.e., who came from households where the language spoken in the household was not English) were significantly less likely than those who were more acculturated (i.e., who came from households where English was the language spoken) to be daily smokers and to smoke at least 15 cigarettes each day. Among

Hispanics who were daily smokers, the percentage who smoked within 30 minutes of awakening did not differ significantly by level of acculturation.

Smoking to maintain a lower body weight is believed to contribute to tobacco dependence. In a survey of high school students in Memphis, Tennessee, Camp and colleagues (1993) found that more whites than African Americans believed that cigarette smoking could help them control their body weight. Among the high school students who smoked, 39 percent of white females and 12 percent of white males reported smoking to control their body weight, compared with none of the African American students.

A few studies have analyzed the perceptions that members of racial/ethnic groups have regarding the addictive nature of tobacco. In a San Francisco area study of 2,835 primary care patients who smoked, Vander Martin and colleagues (1990) found that whites smoked more cigarettes per day and were more likely to consider themselves addicted to cigarettes than African American, Asian American, and Hispanic smokers. Smoking within 15 minutes of awakening was least likely among Hispanic smokers but equally common among smokers in the other groups. In addition, African Americans and Hispanics were less likely than the others to believe that quitting smoking would lead to weight gain.

<sup>†95%</sup> confidence interval.

Most Americans of all races and ethnicities realize that cigarette smoking is addictive. In a survey of 2,092 adults in St. Louis and Kansas City, Missouri, Brownson and colleagues (1992) found that a similar number of whites (90.3 percent) and African Americans (88.5 percent) believed cigarette smoking was addictive. Results from the 1992–1993 CPS (see Chapter 5, Research and Development Limitations) showed that most members of the four racial/ethnic groups as well as whites agreed with the statements that cigarette smoking was an addiction or both a habit and an addiction (Table 18) (U.S. Bureau of the Census, NCI Tobacco Use Supplement, public use data tapes, 1992– 1993). Minor differences across gender were observed, although smokers were somewhat less likely to agree with the statements. Approximately 5 percent of the Asian American and Hispanic smokers indicated that cigarette smoking was neither a habit nor an addiction, compared with 1.9 percent of white smokers.

#### Racial/Ethnic Differences in Quitting Smoking

Because nicotine is addictive, highly addicted smokers have great difficulty in quitting. Differences in quitting can be used as another measure of the level of dependence. Some studies have found that although a similar percentage of whites and African Americans have ever been smokers, the percentage of former smokers has been greater among whites (26.4 percent) than among African Americans (17.2 percent) (Novotny et al. 1988) (see also Chapter 2). Data for 1989 from the BRFSS indicate that the standardized prevalence of smoking cessation was 47 percent among whites vs. 39.1 percent among African Americans (prevalence of cessation was defined as the percentage of ever smokers who were former smokers) (CDC 1990). Similar findings were reported by Kabat and Wynder (1987), Hahn and colleagues (1990), and Geronimus and colleagues (1993). The 1991 NHIS Health Promotion and Disease Prevention supplement collected data on smokers who had quit for at least one day at the time of survey and for at least one month in the previous year (CDC 1993b). Hispanics (52.1 percent) and African Americans (48.7 percent) were more likely than whites (40.3 percent) to have quit smoking for one day. However, data on abstinence from smoking in the previous year showed that Hispanics (16.3 percent) and whites (14.0 percent) were more likely than African Americans (7.9 percent) to have quit smoking for one month or longer. Thus, African Americans were less likely than whites to

maintain abstinence. This effect remained after the findings were controlled for socioeconomic status. In an unadjusted analysis of data from the Current Population Survey NCI Supplement, a similar pattern was observed, although the differences between African Americans and whites were slight (see Table 2 and African Americans, Quitting Behavior in Chapter 2).

The lower smoking cessation rates among African Americans do not appear to result from a lack of desire to quit (Royce et al. 1993). In the COMMIT telephone survey, 46.0 percent of African American women and 44.4 percent of African American men stated that they wanted to quit smoking "a lot," compared with 35.0 percent of white women and 33.3 percent of white men. Thus, the lower prevalence of cessation among African Americans may be related to factors other than the desire to quit, such as the absence of culturally appropriate smoking cessation interventions, difficulties in accessing community resources for quitting smoking, and possibly a higher level of nicotine dependence as indicated by comparatively higher levels of cotinine when the data are controlled for the number of cigarettes smoked.

#### Addiction to Smokeless Tobacco

Considerable nicotine is absorbed from smokeless tobacco. An average systemic dose of nicotine is 3.6 mg for snuff, 4.6 mg for chewing tobacco, and 1.8 mg for cigarettes (Benowitz et al. 1988). Blood nicotine concentrations throughout the day are similar among smokers and those who use smokeless tobacco (Benowitz et al. 1989a). Plasma cotinine levels in regular smokeless tobacco users are often similar to the levels in cigarette smokers (Holm et al. 1992). Abstinence from smokeless tobacco use results in signs and symptoms of nicotine deprivation that are similar to those seen in smokers after they stop smoking (Hatsukami et al. 1987; CDC 1994). These symptoms are reversed by the use of tobacco or administration of nicotine gum. In a study of Swedish oral snuff users, many of the participants considered themselves addicted to snuff, and they reported having as much difficulty giving up smokeless tobacco use as was reported by cigarette smokers trying to quit smoking (Holm et al. 1992). Evidence also suggests that when regular snuff users are deprived of snuff, they will smoke cigarettes to satisfy their need for nicotine (Benowitz 1992b). However, no data are available on racial or ethnic differences in the level of addiction to smokeless tobacco.

Percentage of men and women who considered smoking a habit or addiction,\* overall and by smoking status, Current Population Survey, United States, 1992-1993

| Characteristic | African<br>Americans |                  | American Indians/<br>Alaska Natives |     | Asian Americans/<br>Pacific Islanders |            | Hispanics |     | Whites |     |
|----------------|----------------------|------------------|-------------------------------------|-----|---------------------------------------|------------|-----------|-----|--------|-----|
|                | <b>%</b> †           | ±CI <sup>‡</sup> | %                                   | ±CI | %                                     | ±CI        | %         | ±CI | %      | ±CI |
| Overall        |                      |                  |                                     |     |                                       |            |           |     |        |     |
| Habit          | 31.7                 | 0.7              | 19.6                                | 2.6 | 23.9                                  | 1.4        | 25.1      | 0.8 | 17.8   | 0.2 |
| Addiction      | 19.8                 | 0.6              | 19.6                                | 2.6 | 17.8                                  | 1.2        | 26.3      | 0.8 | 21.9   | 0.2 |
| Both           | 41.3                 | 0.7              | 54.6                                | 3.3 | 46.4                                  | 1.6        | 38.4      | 0.9 | 57.0   | 0.3 |
| Men            |                      |                  |                                     |     |                                       |            |           |     |        |     |
| Habit          | 32.3                 | 1.1              | 19.5                                | 3.9 | 25.5                                  | 2.0        | 26.4      | 1.2 | 19.3   | 0.3 |
| Addiction      | 20.4                 | 0.9              | 21.4                                | 4.0 | 18.4                                  | 1.8        | 26.7      | 1.2 | 22.0   | 0.3 |
| Both           | 39.5                 | 1.1              | 52.6                                | 4.9 | 45.8                                  | 2.3        | 36.7      | 1.3 | 55.2   | 0.4 |
| Women          | 07.0                 |                  | 52.5                                | *** | 10.0                                  | 2.0        | 50.7      | 1.0 | 00.2   | 0.1 |
| Habit          | 31.3                 | 0.9              | 19.6                                | 3.5 | 22.5                                  | 1.9        | 24.0      | 1.0 | 16.5   | 0.3 |
| Addiction      | 19.5                 | 0.8              | 18.1                                | 3.4 | 17.2                                  | 1.7        | 25.9      | 1.1 | 21.9   | 0.3 |
| Both           | 42.5                 | 0.9              | 56.2                                | 4.4 | 46.9                                  | 2.2        | 39.8      | 1.2 | 58.6   | 0.4 |
| Dom            | 12.0                 | 0.7              | 30.2                                | 7.1 | 10.7                                  | 2.2        | 37.0      | 1.2 | 56.6   | 0.4 |
| Nonsmokers     |                      |                  |                                     |     |                                       |            |           |     |        |     |
| Habit          | 29.8                 | 0.8              | 18.3                                | 3.3 | 21.7                                  | 1.4        | 23.5      | 0.8 | 16.4   | 0.2 |
| Addiction      | 20.4                 | 0.7              | 21.1                                | 3.5 | 18.9                                  | 1.4        | 27.1      | 0.9 | 23.0   | 0.3 |
| Both           | 42.9                 | 0.8              | 54.6                                | 4.2 | 47.5                                  | 1.8        | 39.4      | 1.0 | 57.7   | 0.3 |
| Men            |                      |                  |                                     |     |                                       |            |           |     |        |     |
| Habit          | 30.3                 | 1.3              | 19.8                                | 5.3 | 22.2                                  | 2.2        | 24.6      | 1.3 | 18.0   | 0.4 |
| Addiction      | 20.5                 | 1.1              | 22.4                                | 5.5 | 20.2                                  | 2.1        | 27.9      | 1.4 | 22.8   | 0.4 |
| Both           | 41.6                 | 1.4              | 51.4                                | 6.6 | 48.1                                  | 2.6        | 38.0      | 1.5 | 56.1   | 0.5 |
| Women          |                      |                  |                                     |     |                                       |            |           |     |        |     |
| Habit          | 29.6                 | 1.0              | 17.3                                | 4.2 | 21.3                                  | 1.9        | 22.7      | 1.1 | 15.0   | 0.3 |
| Addiction      | 20.3                 | 0.9              | 20.2                                | 4.5 | 17.8                                  | 1.8        | 26.5      | 1.1 | 23.1   | 0.4 |
| Both           | 43.7                 | 1.1              | 56.8                                | 5.5 | 47.0                                  | 2.4        | 40.4      | 1.3 | 59.0   | 0.4 |
| Smokers        |                      |                  |                                     |     |                                       |            |           |     |        |     |
| Habit          | 36.6                 | 1.4              | 21.5                                | 4.4 | 36.0                                  | 3.9        | 32.7      | 2.0 | 22.1   | 0.5 |
| Addiction      | 18.6                 | 1.1              | 17.5                                | 4.0 | 12.3                                  | 2.7        | 22.6      | 1.7 | 18.9   | 0.4 |
| Both           | 37.2                 | 1.4              | 54.4                                | 5.3 | 40.9                                  | 4.0        | 34.1      | 2.0 | 55.2   | 0.6 |
| Men            |                      |                  |                                     |     |                                       |            |           |     | •      |     |
| Habit          | 36.4                 | 2.0              | 19.4                                | 5.9 | 36.6                                  | 4.7        | 32.3      | 2.5 | 22.9   | 0.7 |
| Addiction      | 20.2                 | 1.7              | 20.5                                | 6.1 | 12.6                                  | 3.2        | 23.3      | 2.3 | 19.7   | 0.7 |
| Both           | 35.1                 | 2.0              | 53.6                                | 7.5 | 38.3                                  | 3.2<br>4.7 | 32.8      | 2.5 | 53.0   | 0.8 |
| Women          | 55.1                 | ۷.0              | 55.0                                | 1.5 | 30.3                                  | 4./        | 94.0      | 2.5 | 55.0   | 0.0 |
| Habit          | 36.7                 | 1.9              | 23.7                                | 6.4 | 34.6                                  | 7.1        | 33.2      | 3.1 | 21.2   | 0.7 |
| Addiction      | 17.2                 | 1.5              | 14.4                                | 5.3 | 11.5                                  | 4.8        | 21.4      | 2.7 | 18.1   | 0.6 |
| Both           | 39.0                 | 1.9              | 55.2                                | 7.5 | 47.0                                  | 7.5        | 36.1      | 3.2 | 57.3   | 0.8 |

<sup>\*</sup>In response to the question, "Do you think smoking is a habit, an addiction, neither, or both?"

†Percentages in this table do not include all categories of responses and thus may not equal 100%.

<sup>&</sup>lt;sup>‡</sup>95% confidence interval.

Source: U.S. Bureau of the Census, National Cancer Institute Tobacco Use Supplement, public use data tapes, 1992-1993.

## **Conclusions**

- Cigarette smoking is a major cause of disease and death in each of the four racial/ethnic groups studied in this report. African Americans currently bear the greatest health burden. Differences in the magnitude of disease risk are directly related to differences in patterns of smoking.
- 2. Although lung cancer incidence and death rates vary widely among the nation's racial/ethnic groups, lung cancer is the leading cause of cancer death for each of the racial/ethnic groups studied in this report. Before 1990, death rates from malignant neoplasms of the respiratory system increased among African American, Hispanic, and American Indian and Alaska Native men and women. From 1990 through 1995 death rates from respiratory cancers decreased substantially among African American men, leveled off among African American women, decreased slightly among Hispanic men and women, and increased among American Indian and Alaska Native men and women.
- 3. Rates of tobacco-related cancers (other than lung cancer) vary widely among members of racial/ethnic groups, and they are particularly high among African American men.
- 4. The effect of cigarette smoking (as reflected by biomarkers of tobacco exposure) on infant birth weight appears to be the same in African American and white women. As reported in previous Surgeon General's reports, cigarette smoking increases the risk of delivering a low-birth-weight infant.

- 5. No significant racial/ethnic group differences have been consistently demonstrated in the relationship between smoking and infant mortality or sudden infant death syndrome (SIDS); cigarette smoking has been associated with increased risk of SIDS and remains a probable cause of infant mortality.
- 6. Future research is needed and should focus on how tobacco use affects coronary heart disease, stroke, cancer, chronic obstructive pulmonary disease, and other respiratory diseases among members of racial/ethnic groups. Studies also are needed to determine how the health effects of smokeless tobacco use and exposure to environmental tobacco smoke vary across racial/ethnic minority groups.
- Persons of all racial/ethnic backgrounds are vulnerable to becoming addicted to nicotine, and no consistent differences exist in the overall severity of addiction or symptoms of addiction across racial/ethnic groups.
- 8. Levels of serum cotinine (a biomarker of tobacco exposure) are higher in African American smokers than in white smokers for similar levels of daily cigarette consumption. Further research is needed to clarify the relationship between smoking practices and serum cotinine levels in U.S. racial/ethnic groups. Variables such as group-specific patterns of smoking behavior (e.g., number of puffs per cigarette, retention time of tobacco smoke in the lungs), rates of nicotine metabolism, and brand mentholation could be explored.

# Appendix. Methodological Issues

It is important to review some methodological issues involved in collecting the data discussed in this chapter. These methodological problems affect the quality of the data and the type of conclusions that can be reached from studies conducted to date. Also, because cigarette smoking tends to be associated with other lifestyle risk factors that impact on health (e.g., Wingard et al. 1982; Vickers et al. 1990; Pérez-Stable et al. 1994), there is a need to control their co-occurrence in order to better understand the health effects of tobacco use.

## **Classification of Smoking Status**

In investigating the health effects of smoking cigarettes and using other tobacco products, researchers typically obtain information from the subjects or surrogate respondents on the use of such products. Questionnaires usually cover cigarette smoking status (i.e., never, former, and current smoker), number of years of smoking and age at initiation of smoking, number of cigarettes smoked per day, and use of other tobacco products (e.g., pipes, cigars, and smokeless

tobacco). However, this information may not be fully valid, resulting in misclassification of exposure to cigarette smoking. A previous report of the Surgeon General reviewed the classification of cigarette smoking status and the consequences of misclassification (USDHHS 1990).

Misclassification of smoking information merits consideration in investigating tobacco use among racial/ethnic populations, because of the potential for bias in comparing the effects of smoking across racial/ ethnic groups. To date, such bias has not been identified, although several studies show that Hispanics may underreport cigarette smoking. In a population-based survey in New Mexico, Coultas and colleagues (1988) compared self-reports of smoking against salivary cotinine level (a product of nicotine that has been used as a measure of exposure to nicotine) and end-tidal carbon monoxide concentration. Based on the questionnaire results, the age-standardized prevalence rates of current smoking were 30.9 and 27.1 percent for Hispanic men and women, respectively. After adjusting for cotinine and carbon monoxide levels, these percentages were 39.1 and 33.2. The rate of misclassification was greater in self-reported former smokers than in never smokers, but self-reported never smokers also had levels of cotinine and carbon monoxide indicative of active smoking.

Using information from the Hispanic Health and Nutrition Examination Survey (HHANES), Pérez-Stable and colleagues (1992) documented the misclassification of smoking status through comparisons of self-reports with serum cotinine levels. Among 65 Mexican American former smokers participating in the HHANES in 1982 through 1983, 7 (10.8 percent) had a cotinine level indicative of active smoking; among 124 reported never smokers, 5 (4 percent) were probably active smokers based on their cotinine levels. In a number of surveys, Hispanics, particularly Latino groups in the southwestern and western United States, have been found to smoke about one-half pack of cigarettes per day, compared with non-Hispanic whites who typically report smoking one pack per day (Coultas et al. 1994). Pérez-Stable and colleagues (1992) used data from 547 Mexican American participants in the HHANES to examine underreporting of cigarette consumption using the ratio of serum cotinine to self-reports of the number of cigarettes smoked per day as the "gold standard." This study found that among Mexican Americans, 20.4 percent of men and 24.7 percent of women who were self-reported smokers underreported smoking between one and nine cigarettes per day. Self-reported Mexican American smokers who reported smoking greater numbers of cigarettes per day underreported less frequently.

An analysis of the data from the Coronary Artery Risk Development in (Young) Adults Study (CARDIA) showed that there were higher rates of misclassification in terms of self-reported nonsmokers who had serum cotinine levels of at least 14 ng/mL among African Americans (5.7 percent) than among non-Hispanic whites (2.8 percent) (Wagenknecht et al. 1992). Alternative explanations for underreporting, such as more efficient smoking and differences in cotinine metabolism, could not be excluded.

Two additional studies examined the relationship between ancestry of origin and levels of biochemical markers in smokers. In a study of participants in CARDIA, African American smokers demonstrated higher cotinine levels than non-Hispanic white smokers after controlling for several dimensions of cigarettesmoking behavior (Wagenknecht et al. 1990). Lactose intolerance, which elevates breath hydrogen concentration, may increase the apparent level of expired air carbon monoxide, a readily measured marker of active smoking (McNeill et al. 1990). Lactose intolerance is common in a number of racial/ethnic groups, including Asian Americans and African Americans.

## Classification of Race/Ethnicity

The data included in this chapter are derived from diverse sources, including vital statistics, cancer registries, and epidemiological studies on smoking. Race/ethnicity has been classified in these studies using various techniques, including designation on death certificate, classification according to cancer registry protocols, self-reports, birthplace, language use, and surname. The validity of each of these approaches is undoubtedly imperfect; moreover, validity varies across regions and over time. However, comprehensive assessments of the validity of racial/ethnic minority classification in various types of health data have not been reported.

The limited information available indicates some potential for misclassification. For example, Frost and colleagues (1992) compared the classification of "Native American," as recorded by the Seattle-Puget Sound registry of the Surveillance, Epidemiology, and End Results (SEER) Program against an Indian Health Service (IHS) registry of patients eligible for services. A substantial portion of patients with invasive cancer in the IHS registry were not similarly classified by the Seattle-Puget Sound cancer registry. Similarly, an injury registry for the state of Oregon undercounted those with injuries (Sugarman et al. 1993). Using data from the National Longitudinal Mortality Study, Sorlie and colleagues (1992) compared demographic characteristics reported on the CPS of the

U.S. Bureau of the Census with those characteristics reported on the death certificates for persons who died (during a seven-year follow-up period). Among 216 persons identified as American Indians or Alaska Natives by the CPS, only 159 (73.6 percent) were so classified on the death certificate. Similarly, the concordance rate for 272 persons classified by the CPS as Asian Americans or Pacific Islanders was 82.4 percent. Such disagreement suggests that current estimates of mortality rates for selected racial/ethnic groups are underestimated. However, in New Mexico, the classification of "American Indian" by the New Mexico Tumor Registry, also a participant in the SEER Program, closely corresponded with the classification by the state's Bureau of Vital Statistics (Eidson et al. 1994).

Another study in New Mexico also showed a high concordance between self-reported Hispanic race/ethnicity and the designation by the Bureau of Vital Statistics (Samet et al. 1988b). In the report by Sorlie and colleagues (1993), 10.3 percent (n = 62) of persons identified as Hispanics by the CPS were not classified as Hispanics on the death certificate. Surnames also have been used to classify Hispanic ethnicity, using either surname lists developed by the U.S. Bureau of the Census or name recognition algorithms (Howard et al. 1983; Wiggins and Samet 1993). Although studies in parts of the southwestern United States have shown a generally high validity for surname-based approaches for identifying Hispanic ethnicity, the sensitivity and specificity of the various Census Bureau lists have varied over time, and data from the Southwest cannot be readily generalized to other locales. In addition, surname lists tend to exclude women who marry non-Hispanic whites and who take their husband's last name and to exclude as well their children when given the father's non-Hispanic last name (Marin and Marin 1991).

These studies suggest that the validity of classification of race/ethnicity is likely to vary across locations and possibly by type of data. In interpreting health data for racial/ethnic populations, consideration should be given to the potential for misclassification of race/ethnicity and the consequences of any resulting bias.

#### Classification of Health Outcomes

Comparisons of disease occurrence among racial/ethnic groups also may be biased by differential patterns of disease diagnosis and labeling by race and ethnicity. Such differences may have multiple causes that reflect the complex sequence that begins with the development of symptoms and signs and extends to the labeling of an illness by a clinician or the statement of cause-of-death on a death certificate.

Health beliefs and knowledge, ability to access and pay for medical care, the quality of care available, and differential patterns of care by race/ethnicity may all affect diagnoses of illnesses. A full review of these topics is beyond the scope of this report, but several examples are offered to illustrate the potential for differential patterns of classification of health outcomes by race/ethnicity.

Becker and colleagues (1990) examined the assignment of underlying cause of death to the category "symptoms, signs, and ill-defined conditions" in the Manual of the International Classification of Diseases, Injuries and Causes of Death (ICD). In the nation, the crude death rate for this non-specific category has paralleled the mortality rate in this category for African Americans. Becker and colleagues (1990) analyzed vital statistics data for New Mexico for 1958 through 1982 and calculated mortality rates for "symptoms, signs, and ill-defined conditions" by racial/ethnic group. The state mortality rates for Hispanics, non-Hispanic whites, and American Indians for this category exceeded the nationwide rates. Among the racial/ethnic minority groups in New Mexico, American Indians had particularly high mortality rates; for men, 8.4 percent of American Indian deaths were in this category versus 5.9 percent of Hispanic deaths and 5.0 percent of non-Hispanic white deaths. Similarly, mortality rates for cancers of ill-defined and unknown primary sites tend to be much higher in American Indians in several areas of the country than for all racial/ethnic groups combined (Valway 1992).

Recent comparisons of the evaluation and management of chest pain and coronary artery disease in African Americans and non-Hispanic whites further illustrate the potential for bias by race/ethnicity in diagnostic classification. In a study of patients presenting to an emergency room with chest pain, African Americans were less likely to be admitted and less likely to be sent to a coronary care unit once they were admitted (Johnson et al. 1993). The study also found that African Americans were as likely as non-Hispanic whites to have cardiac catheterization. In contrast, other studies, using Department of Veterans' Affairs, Medicare, and other large data bases, have shown that African Americans are less likely than non-Hispanic whites to have cardiac catheterization and invasive interventions for coronary artery disease (Wenneker and Epstein 1989; Udvarhelyi et al. 1992; Ayanian et al. 1993; Franks et al. 1993; Whittle et al. 1993; Peterson et al. 1994). These differential patterns of evaluation by race/ethnicity could introduce bias in investigations of tobacco smoking and coronary artery disease among African Americans and non-Hispanic whites by underestimating the effects of cigarette smoking on coronary artery disease.

## References

Abbott RD, Yin Y, Reed DM, Yano K. Rise of stroke in male cigarette smokers. New England Journal of Medicine 1986;315(12):717-20.

Ahijevych K, Wewers ME. Factors associated with nicotine dependence among African American women cigarette smokers. Research in Nursing and Health 1993;16(4):283-92.

Ahijevych K, Gillespie J, Demirci M, Jagadeesh J. Menthol and nonmenthol cigarettes and smoke exposure in black and white women. Pharmacology Biochemistry and Behavior 1996;53(2):355-60.

Alameda County Low Birth Weight Study Group. Cigarette smoking and the risk of low birth weight: a comparison in black and white women. Epidemiology 1990;1(3):201-5.

American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV™). Washington (DC): American Psychiatric Association, 1994.

Andreski P, Breslau N. Smoking and nicotine dependence in young adults: differences between blacks and whites. *Drug and Alcohol Dependence* 1993;32(2):119–25.

Anton-Culver H, Lee-Feldstein A, Taylor TH. The association of bladder cancer risk with ethnicity, gender, and smoking. Annals of Epidemiology 1993;3(4):429-33.

Asian American Health Forum, Inc. Asian and Pacific Islander American California Proportionate Mortality Ratios. Monograph Series 2. San Francisco: Asian American Health Forum, 1990.

Ayanian JZ, Udvarhelyi IS, Gatsonis CA, Pashos CL, Epstein AM. Racial differences in the use of revascularization procedures after coronary angiography. Journal of the American Medical Association 1993; 269(20):2642-6.

Ayesh R, Idle JR, Ritchie JC, Crothers MJ, Hetzel MR. Metabolic oxidation phenotypes as markers for susceptibility to lung cancer. Nature 1984;312(5990):169-70.

Bang KM, Gergen PJ, Carroll M. Prevalence of chronic bronchitis among U.S. Hispanics from the Hispanic Health and Nutrition Examination Survey, 1982–84. American Journal of Public Health 1990;80(12):1495-7.

Baquet CR, Horm JW, Gibbs T, Greenwald P. Socioeconomic factors and cancer incidence among blacks and whites. Journal of the National Cancer Institute 1991;83(8):551-7.

Baquet CR, Ringen K, Pollack ES, Young JL, Horm JW, Ries LAG. Cancer Among Blacks and Other Minorities: Statistical Profiles. Bethesda (MD): US Department of Health and Human Services, Public Health Service, National Institutes of Health, National Cancer Institute, Division of Cancer Prevention and Control. NIH Publication No. 86-2785, 1986.

Bardy AH, Seppälä T, Lillsunde P, Kataja JM, Koskela P, Pikkarainen I, et al. Objectively measured tobacco exposure during pregnancy: neonatal effects and relation to maternal smoking. British Journal of Obstetrics and Gynaecology 1993;100(8):721–6.

Bartsch H, Malaveille C, Friesen M, Kadlubar FF, Vineis P. Black (air-cured) and blond (flue-cured) tobacco cancer risk IV: molecular dosimetry studies implicate aromatic amines as bladder carcinogens. European Journal of Cancer 1993;29A(8):1199-1207.

Becerra JE, Smith JC. Maternal smoking and low birthweight in the reproductive history of women in Puerto Rico, 1982. American Journal of Public Health 1988;78(3):268–72.

Beck GJ, Doyle CA, Schachter EN. Smoking and lung function. American Review of Respiratory Disease 1981;123(2):149–55.

Becker TM, Wheeler CM, McGough NS, Parmenter CA, Jordan SW, Stidley CA, et al. Sexually transmitted diseases and other risk factors for cervical dysplasia among southwestern Hispanic and non-Hispanic white women. Journal of the American Medical Association 1994a;271(15):1181-8.

Becker TM, Wheeler CM, McGough NS, Parmenter CA, Stidley CA, Jamison SF, et al. Cigarette smoking and other risk factors for cervical dysplasia in southwestern Hispanic and non-Hispanic white women. *Cancer Epidemiology, Biomarkers & Prevention* 1994b; 3(2):113–9.

Becker TM, Wheeler CM, McPherson RS, Kratochvil A, Parmenter CA, North CQ, et al. Risk factors for cervical dysplasia in southwestern American Indian women: a pilot study. *Alaska Medicine* 1993;35(4): 255–63.

Becker TM, Wiggins C, Key CR, Samet JM. Ischemic heart disease mortality in Hispanics, American Indians, and non-Hispanic whites in New Mexico, 1958–1982. *Circulation* 1988;78(2):302–9.

Becker TM, Wiggins CL, Key CR, Samet JM. Symptoms, signs, and ill-defined conditions: a leading cause of death among minorities. *American Journal of Epidemiology* 1990;131(4):664–8.

Bell DA, Taylor JA, Butler MA, Stephens EA, Wiest J, Brubaker LH, et al. Genotype/phenotype discordance for human arylamine N-acetyltransferase (NAT2) reveals a new slow-acetylator allele common in African-Americans. *Carcinogenesis* 1993;14(8):1689–92.

Benfante R, Reed D, Frank J. Does cigarette smoking have an independent effect on coronary heart disease incidence in the elderly? *American Journal of Public Health* 1991;81(7):897–9.

Benowitz NL. Pharmacologic aspects of cigarette smoking and nicotine addiction. *New England Journal of Medicine* 1988;319(20):1318–30.

Benowitz NL. Clinical pharmacology of inhaled drugs of abuse: implications in understanding nicotine dependence. In: Chiang CN, Hawks RL, editors. *Research Findings on Smoking of Abused Substances*. National Institute on Drug Abuse Research Monograph No. 99. Rockville (MD): US Department of Health and Human Services, Public Health Service, Alcohol, Drug Abuse, and Mental Health Administration, National Institute on Drug Abuse. DHHS Publication No. (ADM) 90-1690, 1990:12–29.

Benowitz NL. Cigarette smoking and nicotine addiction. *Medical Clinics of North America* 1992a;76(2):415–37.

Benowitz NL. Drug therapy—pharmacology of smokeless tobacco use: nicotine addiction and nicotine-related health consequences. In: *Smokeless Tobacco or Health: An International Perspective*. Smoking and Tobacco Control Monograph No. 2. Bethesda (MD): US Department of Health and Human Services, Public Health Service, National Institutes of Health. NIH Publication No. 93-3461, 1992b:219–28.

Benowitz NL. Cotinine as a biomarker of environmental tobacco smoke exposure. *Epidemiologic Reviews* 1996;18(2):188–204.

Benowitz NL, Jacob P III, Jones RT, Rosenberg J. Interindividual variability in the metabolism and cardiovascular effects of nicotine in man. *Journal of Pharmacology and Experimental Therapeutics* 1982;221 (2):368–72.

Benowitz NL, Jacob P III, Yu L. Daily use of smokeless tobacco: systemic effects. *Annals of Internal Medicine* 1989a;111(2):112–6.

Benowitz NL, Jacob P III, Yu L, Talcott R, Hall S, Jones RT. Reduced tar, nicotine, and carbon monoxide exposure while smoking ultralow- but not low-yield cigarettes. *Journal of the American Medical Association* 1986; 256(2):241–6.

Benowitz NL, Pérez-Stable E, Herrera B, Jacob P. African American-Caucasian differences in nicotine and cotinine metabolism [abstract]. *Clinical Pharmacology and Therapeutics* 1995;57(2):159.

Benowitz NL, Porchet H, Jacob P III. Nicotine dependence and tolerance in man: pharmacokinetic and pharmacodynamic investigations. In: Nordberg A, Fuxe K, Holmstedt B, Sundwall A, editors. *Progress in Brain Research*. Vol. 79. Amsterdam: Elsevier Science Publishers, 1989b:279–87.

Benowitz NL, Porchet H, Sheiner L, Jacob P III. Nicotine absorption and cardiovascular effects with smokeless tobacco use: comparison with cigarettes and nicotine gum. *Clinical Pharmacology and Therapeutics* 1988;44(1):23–8.

Benwell MEM, Balfour DJK, Anderson JM. Evidence that tobacco smoking increases the density of (–)-[3H] nicotine binding sites in human brain. *Journal of Neuro-chemistry* 1988;50(4):1243–7.

Bernstein L, Ross RK. Cancer in Los Angeles County: A Portrait of Incidence and Mortality, 1972–1987. Los Angeles: University of Southern California, 1991.

Blot WJ, Lanier A, Fraumeni JF Jr, Bender TR. Cancer mortality among Alaskan Natives, 1960–69. *Journal of the National Cancer Institute* 1975;55(3):547–54.

Blot WJ, McLaughlin JK, Winn DM, Austin DF, Greenberg RS, Preston-Martin S, et al. Smoking and drinking in relation to oral and pharyngeal cancer. *Cancer Research* 1988;48(11):3282–7.

Bolinder G, Alfredsson L, Englund A, de Faire U. Smokeless tobacco use and increased cardiovascular mortality among Swedish construction workers. *American Journal of Public Health* 1994;84(3):399–404.

Boyd GM, Glover ED. Smokeless tobacco use by youth in the U.S. *Journal of School Health* 1989;59(5):189–94.

Braithwaite RL, Taylor SE, editors. *Health Issues in the Black Community*. San Francisco: Jossey-Bass, 1992.

Brown LM, Hoover RN, Greenberg RS, Schoenberg JB, Schwartz AG, Swanson GM, et al. Are racial differences in squamous cell esophageal cancer explained by alcohol and tobacco use? *Journal of the National Cancer Institute* 1994;86(17):1340–5.

Brownson RC, Jackson-Thompson J, Wilkerson JC, Davis JR, Owens NW, Fisher EB Jr. Demographic and socioeconomic differences in beliefs about the health effects of smoking. *American Journal of Public Health* 1992;82(1):99–103.

Buechley R, Dunn JE Jr, Linden G, Breslow L. Excess lung-cancer–mortality rates among Mexican women in California. *Cancer* 1957;10(1):63–6.

Buechley RW, Key CR, Morris DL, Morton WE, Morgan MV. Altitude and ischemic heart disease in tricultural New Mexico: an example of confounding. *American Journal of Epidemiology* 1979;109(6):663–6.

Buell PE, Mendez WM, Dunn JE Jr. Cancer of the lung among Mexican immigrant women in California. *Cancer* 1968;22(1):186–92.

Burchfiel CM, Marcus EB, Curb JD, Maclean CJ, Vollmer WM, Johnson LR, et al. Effects of smoking and smoking cessation on longitudinal decline in pulmonary function. *American Journal of Respiratory and Critical Care Medicine* 1995;151(6):1778–85.

Burchfiel CM, Marcus EB, Sharp DS, Enright PL, Rodriguez BL, Masakai KH, et al. Characteristics associated with rapid decline in forced expiratory volume. *Annals of Epidemiology* 1996;6(3):217–27.

Burhansstipanov L, Dresser C. Documentation of the Cancer Research Needs of American Indians and Alaska Natives. Native American Monograph No. 1. Bethesda (MD): Cancer Control Science Program, Division of Cancer Prevention and Control, National Cancer Institute. NIH Publication No. 93-3603, 1993.

Burns PB, Swanson GM. Risk of urinary bladder cancer among blacks and whites: the role of cigarette use and occupation. *Cancer Causes and Control* 1991; 2(6):371–9.

Burns PB, Swanson GM. Stomach cancer risk among black and white men and women: the role of occupation and cigarette smoking. *Journal of Occupational and Environmental Medicine* 1995;37(10):1218–23.

Camp DE, Klesges RC, Relyea G. The relationship between body weight concerns and adolescent smoking. *Health Psychology* 1993;12(1):24–32.

Caporaso NE, Tucker MA, Hoover RN, Hayes RB, Pickle LW, Issaq HJ, et al. Lung cancer and the debrisoquine metabolic phenotype. *Journal of the National Cancer Institute* 1990;82(15):1264–72.

Carmelli D, Swan GE, Robinette D, Fabsitz R. Genetic influence on smoking—a study of male twins. *New England Journal of Medicine* 1992;327(12):829–33.

Castro LC, Azen C, Hobel CJ, Platt LD. Maternal tobacco use and substance abuse: reported prevalence rates and associations with the delivery of small for gestational age neonates. *Obstetrics & Gynecology* 1993;81(3):396–401.

Centers for Disease Control. Indian Health Service facilities become smoke-free. *Morbidity and Mortality Weekly Report* 1987;36(22):348–50.

Centers for Disease Control. Prevalence of oral lesions and smokeless tobacco use in Northern Plains Indians. *Morbidity and Mortality Weekly Report* 1988; 37(39):608–11.

Centers for Disease Control. Cessation of cigarette smoking—United States, 1989. *Morbidity and Mortality Weekly Report* 1990;39(38):676–80.

Centers for Disease Control. Discomfort from environmental tobacco smoke among employees at worksites with minimal smoking restrictions—United States, 1988. *Morbidity and Mortality Weekly Report* 1992; 41(20):351–4.

Centers for Disease Control and Prevention. Mortality trends for selected smoking-related cancers and breast cancer—United States, 1950–1990. *Morbidity and Mortality Weekly Report* 1993a;42(44):857, 863–6.

Centers for Disease Control and Prevention. Smoking cessation during previous year among adults—United States, 1990 and 1991. *Morbidity and Mortality Weekly Report* 1993b;42(26):504–7.

Centers for Disease Control and Prevention. Use of smokeless tobacco among adults—United States, 1991. *Morbidity and Mortality Weekly Report* 1993c; 42(14):263–6.

Centers for Disease Control and Prevention. Reasons for tobacco use and symptoms of nicotine withdrawal among adolescent and young adult tobacco users—United States, 1993. *Morbidity and Mortality Weekly Report* 1994;43(41):745–50.

Chyou PH, Nomura AMY, Stemmermann GN, Kato I. Lung cancer: a prospective study of smoking, occupation, and nutrient intake. *Archives of Environmental Health* 1993;48(2):69–72.

Clark PI, Gautam SP, Gerson LW. Effect of menthol cigarettes on biochemical markers of smoke exposure among black and white smokers. *Chest* 1996a; 110(5):1194–8.

Clark PI, Gautam S, Hlaing WM, Gerson LW. Response error in self-reported current smoking frequency by black and white established smokers. *Annals of Epidemiology* 1996b;6(6):483–9.

Cloninger CR. Neurogenetic adaptive mechanisms in alcoholism. *Science* 1987;236(4800):410–6.

Cohen BB, Friedman DJ, Mahan CM, Lederman R, Munoz D. Ethnicity, maternal risk, and birth weight among Hispanics in Massachusetts, 1987–89. *Public Health Reports* 1993;108(3):363–71.

Cooper RS, Ford E. Comparability of risk factors for coronary heart disease among blacks and whites in the NHANES-I Epidemiologic Follow-Up Study. *Annals of Epidemiology* 1992;2(5):637–45.

Correa P, Fontham E, Pickle LW, Chen V, Lin Y, Haenszel W. Dietary determinants of gastric cancer in south Louisiana inhabitants. *Journal of the National Cancer Institute* 1985;75(4):645–54.

Coultas DB. Other occupational carcinogens. In: Samet JM, editor. *Epidemiology of Lung Cancer*. New York: Marcel Dekker, 1994: 299–333.

Coultas DB, Gong H Jr, Grad R, Handler A, McCurdy SA, Player R, et al. Respiratory diseases in minorities of the United States. *American Journal of Respiratory and Critical Care Medicine* 1994;149(2):S93–S131.

Coultas DB, Howard CA, Peake GT, Skipper BJ, Samet JM. Discrepancies between self-reported and validated cigarette smoking in a community survey of New Mexico Hispanics. *American Review of Respiratory Disease* 1988;137(4):810–14.

Coultas DB, Samet JM. Occupational lung cancer. Clinics in Chest Medicine 1992;13(2):341–54.

Coultas DB, Stidley CA, Samet JM. Cigarette yields of tar and nicotine and markers of exposure to tobacco smoke. *American Review of Respiratory Disease* 1993; 148(2):435–40.

Crawford FG, Mayer J, Santella RM, Cooper TB, Ottman R, Tsai WY, et al. Biomarkers of environmental tobacco smoke in preschool children and their mothers. *Journal of the National Cancer Institute* 1994; 86(18):1398–402.

Creagan ET, Fraumeni JF Jr. Cancer mortality among American Indians, 1950–67. *Journal of the National Cancer Institute* 1972;49(4):959–67.

Crofts F, Cosma GN, Currie D, Taioli E, Toniolo P, Garte ST. A novel CYP1A1 gene polymorphism in African Americans. *Carcinogenesis* 1993;14(9):1729–31.

David MMA, Hanrahan JP, Carey V, Speizer FE, Tager IB. Respiratory symptoms in urban Hispanic and non-Hispanic white women. *American Journal of Respiratory and Critical Care Medicine* 1996;153(4 Pt 1):1285–91.

Day GL, Blot WJ, Austin DF, Bernstein L, Greenberg RS, Preston-Martin S, et al. Racial differences in risk of oral and pharyngeal cancer: alcohol, tobacco, and other determinants. *Journal of the National Cancer Institute* 1993;85(6):465–73.

Denissenko MF, Pao A, Tang M-s, Pfeifer GP. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. *Science* 1996;274(5286):430–2.

Desencios J-CA, Hahn RA. Years of potential life lost before age 65, by race, Hispanic origin, and sex—United States, 1986–1988. *Morbidity and Mortality Weekly Report* 1992;41(SS-6):13–23.

DeStefano F, Newman J. Comparison of coronary heart disease mortality risk between black and white people with diabetes. *Ethnicity & Disease* 1993;3(2):145–51.

Devesa SS, Diamond EL. Socioeconomic and racial differences in lung cancer incidence. *American Journal of Epidemiology* 1983;118(6):818–31.

Di Pede C, Viegi G, Quackenboss JJ, Boyer-Pfersdorf P, Lebowitz MD. Respiratory symptoms and risk factors in an Arizona population sample of Anglo and Mexican American whites. *Chest* 1991;99(4):916–22.

Doll R, Peto R, Wheatley K, Gray R, Sutherland I. Mortality in relation to smoking: 40 years' observations on male British doctors. *British Medical Journal* 1994;309:901–11.

Dorgan JF, Ziegler RG, Schoenberg JB, Hartge P, McAdams MJ, Falk RT, et al. Race and sex differences in associations of vegetables, fruits, and carotenoids with lung cancer risk in New Jersey (United States). *Cancer Causes and Control* 1993;4(3):273–81.

Dunham LJ, Bailar JC III, Laqueur GL. Histologically diagnosed cancers in 693 Indians of the United States, 1950–65. *Journal of the National Cancer Institute* 1973; 50(5):1119–27.

Economou P, Lechner JF, Samet JM. Familial and genetic factors in the pathogenesis of lung cancer. In: Samet JM, editor. *Epidemiology of Lung Cancer*. New York: Marcel Dekker, 1994:353–96.

Edwards G, Arif A, Hodgson R. Nomenclature and classification of drug- and alcohol-related problems: a shortened version of a WHO memorandum. *British Journal of Addiction* 1982;77(1):3–20.

Eidson M, Becker TM, Wiggins CL, Key CR, Samet JM. Breast cancer among Hispanics, American Indians and non-Hispanic whites in New Mexico. *International Journal of Epidemiology* 1994;23(2):231–7.

English PB, Eskenazi B. Reinterpreting the effects of maternal smoking on infant birthweight and perinatal mortality: a multivariate approach to birthweight standardization. *International Journal of Epidemiology* 1992;21(6):1097–105.

English PB, Eskenazi B, Christianson RE. Black-white differences in serum cotinine levels among pregnant women and subsequent effects on infant birthweight. *American Journal of Public Health* 1994;84(9):1439–43.

Enos WF, Holmes RH, Beyer J. Coronary disease among United States soldiers killed in action in Korea: preliminary report [reprint from 1953]. *Journal of the American Medical Association* 1986;256(20):2859–62.

Evans R, Mullally DI, Wilson RW, Gergen PJ, Rosenberg HM, Grauman JS, et al. National trends in the morbidity and mortality of asthma in the U.S.: prevalence, hospitalization and death from asthma over two decades: 1965–1984. *Chest* 1987;91(6):65S–74S.

Fagerström K-O, Götestam KG. Increase of muscle tonus after tobacco smoking. *Addictive Behaviors* 1977;2(4):203–6.

Fagerström K-O, Schneider NG. Measuring nicotine dependence: a review of the Fagerstrom Tolerance Questionnaire. *Journal of Behavioral Medicine* 1989; 12(2):159–82.

Folsom AR, Johnson KM, Lando HA, McGovern PG, Solberg LI, Ekstrum JK. Plasma fibrinogen and other cardiovascular risk factors in urban American Indian smokers. *Ethnicity & Disease* 1993;3(4):344–50.

Franks AL, May DS, Wenger NK, Blount SB, Eaker ED. Racial differences in the use of invasive coronary procedures after acute myocardial infarction in Medicare beneficiaries. *Ethnicity & Disease* 1993;3(3):213–20.

Frerichs RR, Chapman JM, Maes EF. Mortality due to all causes and to cardiovascular diseases among seven race-ethnic populations in Los Angeles County, 1980. *International Journal of Epidemiology* 1984;13(3):291–8.

Friedman GD, Tekawa I, Sadler M, Sidney S. Smoking and mortality: the Kaiser Foundation experience. In: National Cancer Institute. *Changes in Cigarette-Related Disease Risks and Their Implication for Prevention and Control*. Smoking and Tobacco Control Monograph No. 8. Bethesda (MD): US Department of Health and Human Services, Public Health Service, National Institutes of Health, National Cancer Institute, 1997.

Frost F, Taylor V, Fries E. Racial misclassification of Native Americans in a surveillance, epidemiology, and end results cancer registry. *Journal of the National Cancer Institute* 1992;84(12):957–62.

Garfinkel L. Cigarette smoking and coronary heart disease in blacks: comparison to whites in a prospective study. *American Heart Journal* 1984;108(3 Pt 2):802–7.

Gerlach KK, Shopland DR, Hartman AM, Gibson JT, Pechacek TF. Workplace smoking policies in the United States: results from a national survey of more than 100,000 workers. *Tobacco Control* 1997;6(3):199–206.

Geronimus AT, Neidert LJ, Bound J. Age patterns of smoking in U.S. black and white women of childbearing age. *American Journal of Public Health* 1993; 83(9):1258–64.

Gillum RF. Ischemic heart disease mortality in American Indians, United States, 1969–1971 and 1979–1981. *American Heart Journal* 1988;115(5):1141–4.

Giovannucci E, Colditz GA, Stampfer MJ, Hunter D, Rosner BA, Willett WC, et al. A prospective study of cigarette smoking and risk of colorectal adenoma and colorectal cancer in U.S. women. *Journal of the National Cancer Institute* 1994;86(3):192–9.

Godel JC, Pabst HF, Hodges PE, Johnson KE, Froese GJ, Joffres MR. Smoking and caffeine and alcohol intake during pregnancy in a northern population: effect on fetal growth. *Canadian Medical Association Journal* 1992;147(2):181–8.

Goff DC Jr, Ramsey DJ, Labarthe DR, Nichaman MZ. Acute myocardial infarction and coronary heart disease mortality among Mexican Americans and non-Hispanic whites in Texas, 1980 through 1989. *Ethnicity & Disease* 1993;3(1):64–9.

Goldberg RJ, Burchfiel CM, Benfante R, Chiu D, Reed DM, Yano K. Lifestyle and biologic factors associated with atherosclerotic disease in middle-aged men. *Archives of Internal Medicine* 1995;155(7):686–94.

Goldstein JA, Faletto MB. Advances in mechanisms of activation and deactivation of environmental chemicals. *Environmental Health Perspectives* 1993;100:169–76.

Gross J, Stitzer ML. Nicotine replacement: ten-week effects on tobacco withdrawal symptoms. *Psychopharmacology* 1989;98(3):334–41.

Grunberg NE, Acri JB. Conceptual and methodological considerations for tobacco addiction research. *British Journal of Addiction* 1991;86(5):637–41.

Guengerich FP. Characterization of human cytochrome P450 enzymes. *FASEB Journal* 1992;6(2):745–8.

Guengerich FP. The 1992 Bernard B. Brodie Award Lecture: bioactivation and detoxification of toxic and carcinogenic chemicals. *Drug Metabolism and Disposition* 1993;21(1):1–6.

Hahn LP, Folsom AR, Sprafka JM, Norsted SW. Cigarette smoking and cessation behaviors among urban blacks and whites. *Public Health Reports* 1990; 105(3):290–5.

Hames CG, Rose K, Knowles M, Davis CE, Tyroler HA. Black-white comparisons of 20-year coronary heart disease mortality in the Evans County Heart Study. *Cardiology* 1993;82(2–3):122–36.

Harris RE, Chen-Backlund J-Y, Wynder EL. Cancer of the urinary bladder in blacks and whites: a case-control study. *Cancer* 1990;66(12):2673–80.

Harris RE, Zang EA, Anderson JI, Wynder EL. Race and sex differences in lung cancer risk associated with cigarette smoking. *International Journal of Epidemiology* 1993;22(4):592–9.

Hartge P, Silverman DT, Schairer C, Hoover RN. Smoking and bladder cancer risk in blacks and whites in the United States. *Cancer Causes and Control* 1993; 4(4):391–4.

Hatsukami DK, Gust SW, Keenan RM. Physiologic and subjective changes from smokeless tobacco withdrawal. *Clinical Pharmacology and Therapeutics* 1987; 41(1):103–7.

Heatherton TF, Kozlowski LT, Frecker RC, Rickert W, Robinson J. Measuring the heaviness of smoking: using self-reported time to the first cigarette of the day and number of cigarettes smoked per day. *British Journal of Addiction* 1989;84(7):791–800.

Hebert JR, Kabat GC. Menthol cigarette smoking and oesophageal cancer. *International Journal of Epidemiology* 1989;18(1):37–44.

Hein DW. Acetylator genotype and arylamine-induced carcinogenesis. *Biochimica et Biophysica Acta* 1988; 948(1):37–66.

Heishman SJ, Taylor RC, Henningfield JE. Nicotine and smoking: a review of effects on human performance. *Experimental and Clinical Psychopharmacology* 1994; 2(3):1–51.

Henningfield JE, Cohen C, Giovino GA. Can genetic constitution affect the "objective" diagnosis of nicotine dependence? [editorial]. *American Journal of Public Health* 1990;80(9):1040–1.

Henningfield JE, Kozlowski LT, Benowitz NL. A proposal to develop meaningful labeling for cigarettes [commentary]. *Journal of the American Medical Association* 1994;272(4):312–4.

Henningfield JE, Stapleton JM, Benowitz NL, Grayson RF, London ED. Higher levels of nicotine in arterial than in venous blood after cigarette smoking. *Drug and Alcohol Dependence* 1993;33(1):23–9.

Hinds MW, Stemmermann GM, Yang H-Y, Kolonel LN, Lee J, Wegner E. Differences in lung cancer risk from smoking among Japanese, Chinese and Hawaiian women in Hawaii. *International Journal of Cancer* 1981;27(3):297–302.

Hoffman FL. Cancer Among North American Indians. The Health Progress of the North American Indian. The Indian as a Life Insurance Risk. Newark (NJ): Prudential Press, 1928.

Hogue CJ, Yip R. Preterm delivery: can we lower the black infant's first hurdle? *Journal of the American Medical Association* 1989;262(4):548–50.

Holck SE, Warren CW, Rochat RW, Smith JC. Lung cancer mortality and smoking habits: Mexican American women. *American Journal of Public Health* 1982; 72(1):38–42.

Holm H, Jarvis MJ, Russell MAH, Feyerabend C. Nicotine intake and dependence in Swedish snuff takers. *Psychopharmacology* 1992;108(4):507–11.

Howard BV, Lee ET, Cowan LD, Fabsitz RR, Howard WJ, Oopik AJ, et al. Coronary heart disease prevalence and its relation to risk factors in American Indians: the Strong Heart Study. *American Journal of Epidemiology* 1995;142(3):254–68.

Howard CA, Samet JM, Buechley RW, Schrag SD, Key CR. Survey research in New Mexico Hispanics: some methodological issues. *American Journal of Epidemiology* 1983;117(1):27–34.

Hughes JR. Genetics of smoking: a brief review. *Behavior Therapy* 1986;17(4):335–45.

Hughes JR. Tobacco withdrawal in self-quitters. *Journal of Consulting and Clinical Psychology* 1992;60 (5):689–97.

Hughes JR, Hatsukami DK. The nicotine withdrawal syndrome: a brief review and update. *International Journal of Smoking Cessation* 1992;1(2):21–6.

Hughes JR, Higgins ST, Hatsukami D. Effects of abstinence from tobacco: a critical review. In: Kozlowski LT, Annis HM, Cappell HD, Glaser FB, Goodstadt MS, Israel Y, et al., editors. *Research Advances in Alcohol and Drug Problems*. Vol. 10. New York: Plenum Publishing Corporation, 1990:317–98.

Humble CG, Samet JM, Pathak DR, Skipper BJ. Cigarette smoking and lung cancer in "Hispanic" whites and other whites in New Mexico. *American Journal of Public Health* 1985;75(2):145–8.

Indian Health Service. Regional Differences in Indian Health—1994. Rockville (MD): US Department of Health and Human Services, Public Health Service, Indian Health Service, Office of Planning, Evaluation, and Legislation, Division of Program Statistics, 1994a.

Indian Health Service. *Trends in Indian Health*—1994. Rockville (MD): US Department of Health and Human Services, Public Health Service, Indian Health Service, Office of Planning, Evaluation, and Legislation, Division of Program Statistics, 1994b.

Jacobson JL, Jacobson SW, Sokol RJ, Martier SS, Ager JW, Shankaran S. Effects of alcohol use, smoking, and illicit drug use on fetal growth in black infants. *Journal of Pediatrics* 1994;124(5 Pt 1):757–64.

Jarvik ME, Tashkin DP, Caskey NH, McCarthy WJ, Rosenblatt MR. Mentholated cigarettes decrease puff volume of smoke and increase carbon monoxide absorption. *Physiology and Behavior* 1994;56(3):563–70.

Johnson AA, Knight EM, Edwards CH, Oyemade UJ, Cole OJ, Westney OE, et al. Selected lifestyle practices in urban African American women—relationships to pregnancy outcome, dietary intakes and anthropometric measurements. *Journal of Nutrition* 1994; 124(6S):963S–72S.

Johnson A, Taylor A. National Medical Expenditure Survey. Prevalence of Chronic Diseases: A Summary of Data from the Survey of American Indians and Alaska Natives. Data Summary 3. Rockville (MD): US Department of Health and Human Services, Public Health Service, Agency for Health Care Policy and Research, Center for General Health Services Intramural Research, 1991.

Johnson PA, Lee TH, Cook EF, Rouan GW, Goldman L. Effect of race on the presentation and management of patients with acute chest pain. Annals of Internal Medicine 1993;118(8):593-601.

Kabat GC, Wynder EL. Determinants of quitting smoking. American Journal of Public Health 1987; 77(10):1301-5.

Kabat GC, Herbert JR. Use of mentholated cigarettes and lung cancer risk. Cancer Research 1991;51(24):6510-3.

Kandel D, Chen K, Warner LA, Kessler RC, Grant B. Prevalence and demographic correlates of symptoms of last year dependence on alcohol, nicotine, marijuana and cocaine in the U.S. population. Drug and Alcohol Dependence 1997;44(1):11-29.

Kattapong VJ, Becker TM. Ethnic differences in mortality from cerebrovascular disease among New Mexico's Hispanics, Native Americans, and non-Hispanic whites, 1958 through 1987. Ethnicity & Disease 1993;3(1):75-82.

Kawajiri K, Nakachi K, Imai K, Yoshii A, Shinoda N, Watanabe J. Identification of genetically high risk individuals to lung cancer by DNA polymorphisms of the cytochrome P4501A1 gene. FEBS Letters 1990; 263(1):131-3.

Keenan RM, Hatsukami DK, Pentel PR, Thompson TN, Grillo MA. Pharmacodynamic effects of cotinine in abstinent cigarette smokers. Clinical Pharmacology and Therapeutics 1994;55(5):581-90.

Keenan RM, Hatsukami DK, Pentel PR, Thompson TN, Grillo MA. Evidence that cotinine is psychoactive [reply letter]? Clinical Pharmacology and Therapeutics 1995;57(1):95–7.

Keil JE, Sutherland SE, Knapp RG, Lackland DT, Gazes PC, Tyroler HA. Mortality rates and risk factors for coronary disease in black as compared with white men and women. New England Journal of Medicine 1993;329(2):73-8.

Keil JE, Sutherland SE, Hames CG, Lackland DT, Gazes PC, Knapp RG, et al. Coronary disease mortality and risk factors in black and white men: results from the combined Charleston, SC, and Evans County, Georgia, heart studies. Archives of Internal Medicine 1995;155(14):1521-7.

Kelsey KT, Wiencke JK, Spitz MR. A race-specific genetic polymorphism in the CYP1A1 gene is not associated with lung cancer in African Americans. Carcinogenesis 1994;15(6):1121-4.

Klatsky AL, Armstrong MA, Friedman GD. Racial differences in cerebrovascular disease hospitalizations. Stroke 1991;22(3):299-304.

Klein G, Klein E. Evolution of tumours and the impact of molecular oncology. Nature 1985;315(6016): 190-5.

Kleinman JC. Infant mortality among racial/ethnic minority groups, 1983-1984. Morbidity and Mortality Weekly Report 1990;39(SS-3):31-9.

Kleinman JC, Pierre MB Jr, Madans JH, Land GH, Schramm WF. The effects of maternal smoking on fetal and infant mortality. American Journal of Epidemiology 1988;127(2):274-82.

Klonoff-Cohen HS, Edelstein SH, Lefkowitz ES, Srinivasan IP, Kaegi D, Chang JC, et al. The effect of passive smoking and tobacco exposure through breast milk on sudden infant death syndrome. Journal of the American Medical Association 1995;273(10):795-8.

Knight JM, Eliopoulos C, Klein J, Greenwald M, Koren G. Passive smoking in children: racial differences in systemic exposure to cotinine by hair and urine analysis. Chest 1996;109(2):446-50.

Kolonel LN. Cancer patterns of four ethnic groups in Hawaii. Journal of the National Cancer Institute 1980; 65(5):1127-39.

Kosary CL, Ries LAG, Miller BA, Hankey BF, Harras A, Edwards BK, editors. SEER Cancer Statistics Review, 1973-1992: Tables and Graphs. Bethesda (MD): US Department of Health and Human Services, Public Health Service, National Institutes of Health, National Cancer Institute, Division of Cancer Prevention and Control. NIH Publication No. 96-2789, 1995.

Krasnegor NA. Implications and directions for future research. In: Krasnegor NA, editor. *Cigarette Smoking as a Dependence Process*. National Institute on Drug Abuse Research Monograph No. 23. Rockville (MD): US Department of Health, Education, and Welfare, Public Health Service, Alcohol, Drug Abuse, and Mental Health Administration, National Institute on Drug Abuse. DHHS Publication No. (ADM) 79-800, 1979:186–9.

Kravetz RE. Disease distribution in Southwestern American Indians: analysis of 211 autopsies. *Arizona Medicine* 1964;21(9):628–34.

LaCroix AZ, Haynes SG, Savage DD, Havlik RJ. Rose questionnaire angina among United States black, white, and Mexican-American women and men. *American Journal of Epidemiology* 1989;129(4):669–86.

Land H, Parada LF, Weinberg RA. Cellular oncogenes and multistep carcinogenesis. *Science* 1983;222(4625): 771–8.

Land GH, Stockbauer JW. Smoking and pregnancy outcome: trends among black teenage smokers in Missouri. *American Journal of Public Health* 1993;83(8): 1121–4.

Landi MT, Zocchetti C, Bernucci I, Kadlubar FF, Tannenbaum S, Skipper P, et al. Cytochrome P4501A2: enzyme induction and genetic control in determining 4-aminobiphenyl-hemoglobin adduct levels. *Cancer Epidemiology, Biomarkers & Prevention* 1996;5(9):693–8.

Lanier AP, Bender TR, Blot WJ, Fraumeni JF Jr, Hurlburt WB. Cancer incidence in Alaska Natives. *International Journal of Cancer* 1976;18(4):409–12.

Lanier AP, Kelly J, Smith B, Amadon C, Harpster A, Peters H, et al. *Cancer in the Alaska Native Population: Eskimo, Aleut, and Indian Incidence and Trends, 1969–1988.* Anchorage (AK): US Department of Health and Human Services, Public Health Service, Indian Health Service, Alaska Area Native Health Service, 1993.

Lanier AP, Kelly JJ, Smith B, Harpster AP, Tanttila H, Amadon C, et al. Alaska Native cancer update: incidence rates 1989–1993. *Cancer Epidemiology, Biomarkers & Prevention* 1996;5(9):749–51.

Le Houezec J, Benowitz NL. Basic and clinical psychopharmacology of nicotine. *Clinics in Chest Medicine* 1991;12(4):681–99.

Le Marchand L, Wilkens LR, Kolonel LN. Ethnic differences in the lung cancer risk associated with smoking. *Cancer Epidemiology, Biomarkers & Prevention* 1992; 1(2):103–7.

Lee ES, Roberts RE, Labarthe DR. Excess and deficit lung cancer mortality in three ethnic groups in Texas. *Cancer* 1976;38(6):2551–6.

Levin ED. Nicotinic systems and cognitive function. *Psychopharmacology* 1992;108(4):417–31.

Li CQ, Windsor RA, Perkins L, Goldenberg RL, Lowe JB. The impact on infant birth weight and gestational age of cotinine-validated smoking reduction during pregnancy. *Journal of the American Medical Association* 1993;269(12):1519–24.

Li DK, Daling JR. Maternal smoking, low birth weight, and ethnicity in relation to sudden infant death syndrome. *American Journal of Epidemiology* 1991;134 (9):958–64.

Lieberman E, Gremy I, Lang JM, Cohen AP. Low birthweight at term and the timing of fetal exposure to maternal smoking. *American Journal of Public Health* 1994;84(7):1127–31.

London SJ, Daly AK, Fairbrother KS, Holmes C, Carpenter CL, Navidi WC, et al. Lung cancer risk in African-Americans in relation to a race-specific CYP1A1 polymorphism. *Cancer Research* 1995; 55(24):6035–7.

Lubs ML. Racial differences in maternal smoking effects on the newborn infant. *American Journal of Obstetrics and Gynecology* 1973;115(1):66–76.

Mahoney MC, Michalek AM. A meta-analysis of cancer incidence in United States and Canadian Native populations. *International Journal of Epidemiology* 1991;20(2):323–7.

Mallin K, Anderson K. Cancer mortality in Illinois Mexican and Puerto Rican immigrants, 1979–1984. *International Journal of Cancer* 1988;41(5):670–6.

Malloy MH, Kleinman JC, Land GH, Schramm WF. The association of maternal smoking with age and cause of infant death. *American Journal of Epidemiology* 1988:128(1):46–55.

Mannino DM, Brown C, Giovino GA. Obstructive lung disease deaths in the United States from 1979 through 1993: an analysis using multiple-cause mortality data. *American Journal of Respiratory and Critical Care Medicine* 1997;156(3):814–8.

Marcus EB, Buist AS, Curb JD, Maclean CJ, Reed DM, Johnson LR, et al. Correlates of FEV1 and prevalence of pulmonary conditions in Japanese-American men. *American Review of Respiratory Disease* 1988; 138(6):1398–404.

Marín G, Marín BV. Research with Hispanic Populations. Applied Social Research Methods Series. Vol. 23. Newbury Park (CA): Sage Publications, 1991.

Marks MJ, Campbell SM, Romm E, Collins AC. Genotype influences the development of tolerance to nicotine in the mouse. *Journal of Pharmacology and Experimental Therapeutics* 1991;259(1):392–402.

Marks MJ, Stitzel JA, Collins AC. Time course study of the effects of chronic nicotine infusion on drug response and brain receptors. *Journal of Pharmacology and Experimental Therapeutics* 1985;235(3):619–28.

Marshall CJ, Vousden KH, Phillips DH. Activation of c-Ha-ras-1 proto-oncogene by in vitro modification with a chemical carcinogen, benzo(a)pyrene diolepoxide. *Nature* 1984;310(5978):586–9.

Martin J, Suarez L. Cancer mortality among Mexican Americans and other whites in Texas, 1969–80. *American Journal of Public Health* 1987;77(7):851–3.

Mattson ME, Winn DM. Smokeless tobacco: association with increased cancer risk. In: *Smokeless Tobacco Use in the United States*. National Cancer Institute Monographs No. 8. Bethesda (MD): US Department of Health and Human Services, Public Health Service, National Institutes of Health. NIH Publication No. 89-3055, 1989:5–16.

McCarthy WJ, Caskey NH, Jarvik ME, Gross TM, Rosenblatt MR, Carpenter C. Menthol vs. nonmenthol cigarettes: effects on smoking behavior. *American Journal of Public Health* 1995;85(1):67–72.

McKennell AC. Smoking motivation factors. *British Journal of Social and Clinical Psychology* 1970;9(1):8–22.

McNeill AD, Owen LA, Belcher M, Sutherland G, Fleming S. Abstinence from smoking and expired-air carbon monoxide levels: lactose intolerance as a possible source of error. *American Journal of Public Health* 1990;80(9):1114–5.

McWhorter WM, Polis MA, Kaslow RA. Occurrence, predictors, and consequences of adult asthma in NHANESI and follow-up survey. *American Review of Respiratory Disease* 1989;139(3):721–4.

Menck HR, Henderson BE, Pike MC, Mack T, Martin SP, SooHoo J. Cancer incidence in the Mexican American. *Journal of the National Cancer Institute* 1975;55 (3):531–6.

Middaugh JP. Cardiovascular deaths among Alaskan Natives, 1980–86. *American Journal of Public Health* 1990;80(3):282–5.

Miller EC, Miller JA. Searches for the ultimate chemical carcinogens and their reactions with cellular macromolecules. *Cancer* 1981;47(10):2327–45.

Miller GE, Jarvik ME, Caskey NH, Segerstrom SC, Rosenblatt MR, McCarthy WJ. Cigarette mentholation increases smokers' exhaled carbon monoxide levels. *Experimental and Clinical Psychopharmacology* 1994; 2(2):154–60.

Mitchell BD, Hazuda HP, Haffner SM, Patterson JK, Stern MP. Myocardial infarction in Mexican Americans and non-Hispanic whites: the San Antonio Heart Study. *Circulation* 1991;83(1):45–51.

National Cancer Institute. *Tobacco Effects in the Mouth*. Bethesda (MD): US Department of Health and Human Services, Public Health Service, National Institutes of Health, National Cancer Institute and National Institute of Dental Research. NIH Publication No. 92-3330, 1992.

National Cancer Institute. The FTC Cigarette Test Method for Determining Tar, Nicotine, and Carbon Monoxide Yields of US Cigarettes. Report of the NCI Expert Committee. Smoking and Tobacco Control Monograph No. 7. Bethesda (MD): US Department of Health and Human Services, Public Health Service, National Institutes of Health, National Cancer Institute. NIH Publication No. 96-4028, 1996a.

National Cancer Institute. *Racial/Ethnic Patterns of Cancer in the United States*, 1988–1992. Bethesda (MD): US Department of Health and Human Services, Public Health Service, National Institutes of Health, National Cancer Institute, Division of Cancer Prevention and Control. NIH Publication No. 96-4104, 1996b.

National Center for Health Statistics. Current Estimates From the National Health Interview Survey, 1990. *Vital and Health Statistics*. Series 10, No. 181. Hyattsville (MD): US Department of Health and Human Services, Public Health Service, Centers for Disease Control, National Center for Health Statistics. DHHS Publication No. (PHS) 92-1509, 1991.

National Center for Health Statistics. Advance Report of Final Mortality Statistics, 1990. *Monthly Vital Statistics Report* 1993;41(7 Suppl).

National Center for Health Statistics. *Health, United States*, 1993. Hyattsville (MD): US Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Center for Health Statistics. DHHS Publication No. (PHS) 94-1232, 1994.

National Center for Health Statistics. Advance Report of Final Mortality Statistics, 1994. *Monthly Vital Statistics Report* 1996a;45(3 Suppl).

National Center for Health Statistics. *Health, United States*, 1995. Hyattsville (MD): US Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Center for Health Statistics. DHHS Publication No. (PHS) 96-1232, 1996b.

National Center for Health Statistics. *Health, United States, 1996–97 and Injury Chartbook.* Hyattsville (MD): US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics. DHHS Publication No. (PHS) 97-1232, 1997.

National Research Council. *Environmental Tobacco Smoke: Measuring Exposures and Assessing Health Effects.* Washington (DC): National Academy Press, 1986.

Navarro AM. Cigarette smoking among adult Latinos: the California Tobacco Baseline Survey. *Annals of Behavioral Medicine* 1996;18(4):238–45.

Neggers Y, Goldenberg RL, Cliver SP, Hoffman HJ, Copper RI. The relationship between maternal skinfold thickness, smoking and birthweight in black and white women. *Paediatric and Perinatal Epidemiology* 1994; 8(2):216–21.

Nomura AMY, Stemmermann GN, Chyou PH. Gastric cancer among the Japanese in Hawaii. *Japanese Journal of Cancer Research* 1995;86(10):916–23.

Novotny TE, Warner KE, Kendrick JS, Remington PL. Smoking by blacks and whites: socioeconomic and demographic differences. *American Journal of Public Health* 1988;78(9):1187–9.

Nutting PA, Freeman WL, Risser DR, Helgerson SD, Paisano R, Hisnanick J, et al. Cancer incidence among American Indians and Alaska Natives, 1980 through 1987. *American Journal of Public Health* 1993; 83(11):1589–98.

Ochsner A, DeBakey M. Symposium on cancer. Primary pulmonary malignancy. Treatment by total pneumonectomy; analysis of 79 collected cases and presentation of 7 personal cases. *Surgery, Gynecology, and Obstetrics* 1939;68(2):435–51.

Overpeck MD, Moss AJ. Children's Exposure to Environmental Cigarette Smoke Before and After Birth: Health of Our Nation's Children, United States, 1988. *Advance Data*. No. 202. Hyattsville (MD): US Department of Health and Human Services, Public Health Service, Centers for Disease Control, National Center for Health Statistics, 1991.

Parker CL, Tong T, Bolden BA, Wingo PA. Cancer statistics, 1997. CA: A Cancer Journal for Clinicians 1997;47(1):5–27.

Pattishall EN, Strope GL, Etzel RA, Helms RW, Haley NJ, Denny FW. Serum cotinine as a measure of tobacco smoke exposure in children. *American Journal of Diseases of Children* 1985;139(11):1101–4.

Peeke SC, Peeke HVS. Attention, memory, and cigarette smoking. *Psychopharmacology* 1984;84(2):205–16.

Pérez-Stable EJ, Marín G, Marín BV, Benowitz NL. Misclassification of smoking status by self-reported cigarette consumption. *American Review of Respiratory Disease* 1992;145(1):53–7.

Pérez-Stable EJ, Marín G, Marín BV. Behavioral risk factors: a comparison of Latinos and non-Latino whites in San Francisco. *American Journal of Public Health* 1994; 84(6):971–6.

Pérez-Stable EJ, Vanoss Marín B, Marín G, Brody DJ, Benowitz NL. Apparent underreporting of cigarette consumption among Mexican American smokers. *American Journal of Public Health* 1990;80(9):1057–61.

Peters RK, Thomas D, Hagan DG, Mack TM, Henderson BE. Risk factors for invasive cervical cancer among Latinas and non-Latinas in Los Angeles County. *Journal of the National Cancer Institute* 1986; 77(5):1063–77.

Peterson ED, Wright SM, Daley J, Thibault GE. Racial variation in cardiac procedure use and survival following acute myocardial infarction in the Department of Veterans Affairs. *Journal of the American Medical Association* 1994;271(15):1175–80.

Pickworth WB, Herning RI, Henningfield JE. Spontaneous EEG changes during tobacco abstinence and nicotine substitution in human volunteers. *Journal of Pharmacology and Experimental Therapeutics* 1989; 251(3):976–82.

Pierce JP, Cavin SW, Macky C, Rosbrook B, Berry CC, Maklan DM, et al. *Technical Report on Analytic Methods and Approaches Used in the 1992 California Tobacco Survey Analysis*. Sacramento (CA): California Department of Health Services, 1994.

Pirkle JL, Flegal KM, Bernert JT, Brody DJ, Etzel RA, Maurer KR. Exposure of the U.S. population to environmental tobacco smoke: the third National Health and Nutrition Examination Survey, 1988–1991. *Journal of the American Medical Association* 1996; 275(16):1233–40.

Polednak AP. Cancer incidence in the Puerto Ricanborn population of Long Island, New York. *American Journal of Public Health* 1991;81(11):1405–7.

Polednak AP. Lung cancer rates in the Hispanic population of Connecticut, 1980–88. *Public Health Reports* 1993;108(4):471–6.

Pomerleau OF, Pomerleau CS. Neuroregulators and the reinforcement of smoking: towards a biobehavioral explanation. *Neuroscience and Biobehavioral Reviews* 1984;8(4):503–13.

Pomerleau CS, Pomerleau OF, Majchrzak MJ, Kloska DD, Malakuti R. Relationship between nicotine tolerance questionnaire scores and plasma cotinine. *Addictive Behaviors* 1990;15(1):73–80.

Pottern LM, Morris LE, Blot WJ, Ziegler RG, Fraumeni JF Jr. Esophageal cancer among black men in Washington, D.C. Alcohol, tobacco, and other risk factors. *Journal of the National Cancer Institute* 1981; 67(4):777–83.

Pritchard WS, Robinson JH, Guy TD. Enhancement of continuous performance task reaction time by smoking in non-deprived smokers. *Psychopharmacology* 1992;108(4):437–42.

Reed DM. The paradox of high risk of stroke in populations with low risk of coronary heart disease. *American Journal of Epidemiology* 1990;131(4):579–88.

Reed DM, MacLean CJ, Hayashi T. Predictors of atherosclerosis in the Honolulu Heart Program. I: biologic, dietary, and lifestyle characteristics. *American Journal of Epidemiology* 1987;126(2):214–25.

Reed D, McGee D, Cohen J, Yano K, Syme SL, Feinleib M. Acculturation and coronary heart disease among Japanese men in Hawaii. *American Journal of Epidemiology* 1982:115(6):894–905.

Reed D, McGee D, Yano K. Trends of coronary heart disease among men of Japanese ancestry in Hawaii. *Journal of Community Health* 1983;8(3):149–59.

Reichenbach DD. Autopsy incidence of diseases among Southwestern American Indians. *Archives of Pathology* 1967;84(July):81–6.

Rewers M, Shetterly SM, Hoag S, Baxter J, Marshall J, Hamman RF. Is the risk of coronary heart disease lower in Hispanics than in non-Hispanic whites? The San Luis Valley diabetes study. *Ethnicity & Disease* 1993;3(1):44–54.

Rhoades ER. The major respiratory diseases of American Indians. *American Review of Respiratory Disease* 1990;141(3):595–600.

Richie JP, Carmella SG, Muscat JE, Scott DG, Akerkar SA, Hecht SS. Differences in the urinary metabolites of the tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in black and white smokers. *Cancer Epidemiology*, *Biomarkers & Prevention* 1997;6(10):783–90.

Ries LAG, Kosary CL, Hankey BF, Miller BA, Harras A, Edwards BK, editors. SEER Cancer Statistics Review, 1973–1994. Bethesda (MD): US Department of Health and Human Services, Public Health Service, National Institutes of Health, National Cancer Institute. NIH Publication No. 97-2789, 1997.

Rodriguez BL, Sharp DS, Abbott RD, Burchfiel CM, Masaki K, Chyou PH, et al. Fish intake may limit the increase in risk of coronary heart disease morbidity and mortality among heavy smokers. *Circulation* 1996;94(5):952–6.

Rosenberg MJ, editor. *Smoking and Reproductive Health*. Littleton (MA): PSG Publishing Company, 1987.

Rosenwaike I. Mortality differentials among persons born in Cuba, Mexico, and Puerto Rico residing in the United States, 1979–81. *American Journal of Public Health* 1987;77(5):603–6.

Ross RK, Bernstein L, Hartnett NM, Boone JR. Cancer patterns among Vietnamese immigrants in Los Angeles County. *British Journal of Cancer* 1991;64(1):185–6.

Royce JM, Hymowitz N, Corbett K, Hartwell TD, Orlandi MA. Smoking cessation factors among African Americans and whites. *American Journal of Public Health* 1993;83(2):220–6.

Russell MAH, Peto J, Patel UA. The classification of smoking by factorial structure of motives. *Journal of the Royal Statistical Society* 1974;137(Pt 3, Series A): 313–46.

Salsbury CG, Howard FH, Bassford PS Jr, Atkinson GR, Green RW. A cancer detection survey of carcinoma of the lung and female pelvis among Navajos on the Navajo Indian reservation. Surgery, Gynecology and Obstetrics 1959;108(3):257–66.

Samet JM. Definitions and methodology in COPD research. In: Hensley MJ, Saunders NA, editors. *Clinical Epidemiology of Chronic Obstructive Pulmonary Disease*. New York: Marcel Dekker, 1989:1–22.

Samet JM. The epidemiology of lung cancer. *Chest* 1993;103(1 Suppl):20S–29S.

Samet JM, Coultas DB, Howard CA, Skipper BJ. Respiratory disease and cigarette smoking in a Hispanic population in New Mexico. *American Review of Respiratory Disease* 1988a;137(4):815–9.

Samet JM, Key CR, Kutvirt DM, Wiggins CL. Respiratory disease mortality in New Mexico's American Indians and Hispanics. *American Journal of Public Health* 1980;70(5):492–7.

Samet JM, Schrag SD, Howard CA, Key CR, Pathak DR. Respiratory disease in a New Mexico population sample of Hispanic and non-Hispanic whites. *American Review of Respiratory Disease* 1982;125(2):152–7.

Samet JM, Wiggins CL, Key CR, Becker TM. Mortality from lung cancer and chronic obstructive pulmonary disease in New Mexico, 1958–82. *American Journal of Public Health* 1988b;78(9):1182–6.

Saracci R, Boffetta P. Interactions of tobacco smoking with other causes of lung cancer. In: Samet JM, editor. *Epidemiology of Lung Cancer*. New York: Marcel Dekker, 1994:465–93.

Saunders E, editor. *Cardiovascular Diseases in Blacks*. Philadelphia: F.A. Davis Company, 1991.

Savitz DA. Changes in Spanish surname cancer rates relative to other whites, Denver area, 1969–71 to 1979–81. American Journal of Public Health 1986; 76(10):1210–5.

Schoen R, Nelson VE. Mortality by cause among Spanish surnamed Californians, 1969–71. Social Science Quarterly 1981;62(2):259–74.

Schoendorf KC, Kiely JL. Relationship of sudden infant death syndrome to maternal smoking during and after pregnancy. *Pediatrics* 1992;90(6):905–8.

Schwartz AG, Swanson GM. Lung carcinoma in African Americans and whites: a population-based study in metropolitan Detroit, Michigan. *Cancer* 1997; 79(1):45–52.

Sharp DS, Rodriguez BL, Shahar E, Hwang LJ, Burchfiel CM. Fish consumption may limit the damage of smoking on the lung. *American Journal of Respiratory and Critical Care Medicine* 1994;150(4):983–7.

Shea S, Stein AD, Basch CE, Lantigua R, Maylahn C, Strogatz DS, et al. Independent associations of educational attainment and ethnicity with behavioral risk factors for cardiovascular disease. *American Journal of Epidemiology* 1991;134(6):567–82.

Shields PG, Caporaso NE, Falk RT, Sugimura H, Trivers GE, Trump BF, et al. Lung cancer, race, and a CYP1A1 genetic polymorphism. *Cancer Epidemiology, Biomarkers & Prevention* 1993;2(5):481–5.

Shopland DR. Tobacco use and its contribution to early cancer mortality with a special emphasis on cigarette smoking. *Environmental Health Perspectives* 1995; 103(Suppl 8):131–41.

Sidney S, Tekawa IS, Friedman GD, Sadler MC, Tashkin DP. Mentholated cigarette use and lung cancer. *Archives of Internal Medicine* 1995;155(7):727–32.

Siegel M. Smoking and leukemia: evaluation of a causal hypothesis. *American Journal of Epidemiology* 1993; 138(1):1–9.

Sievers ML, Cohen SL. Lung cancer among Indians of the Southwestern United States. *Annals of Internal Medicine* 1961;54(5):912–5.

Slamon DJ, deKernion JB, Verma IM, Cline MJ. Expression of cellular oncogenes in human malignancies. *Science* 1984;224(4646):256–62.

Smith RL. Recorded and expected mortality among the Indians of the United States with special reference to cancer. *Journal of the National Cancer Institute* 1957; 18(3):385–96.

Smith CA, Pratt M. Cardiovascular disease. In: Brownson RC, Remington PL, Davis JR, editors. *Chronic Disease Epidemiology and Control*. Washington (DC): American Public Health Association, 1993: 83–107.

Smith RL, Salsbury CG, Gilliam AG. Recorded and expected mortality among the Navajo, with special reference to cancer. *Journal of the National Cancer Institute* 1956;17(1):77–89.

Snyder FR, Davis FC, Henningfield JE. The tobacco withdrawal syndrome: performance decrements assessed on a computerized test battery. *Drug and Alcohol Dependence* 1989;23(3):259–66.

Snyder FR, Henningfield JE. Effects of nicotine administration following 12 h of tobacco deprivation: assessment on computerized performance tasks. *Psychopharmacology* 1989;97(1):17–22.

Sorem KA. Cancer incidence in the Zuni Indians of New Mexico. *Yale Journal of Biology and Medicine* 1985;58(5):489–96.

Sorlie PD, Backlund E, Johnson NJ, Rogot E. Mortality by Hispanic status in the United States. *Journal of the American Medical Association* 1993;270(20):2464–8.

Sorlie PD, Rogot E, Johnson NJ. Validity of demographic characteristics on the death certificate. *Epidemiology* 1992;3(2):181–4.

Spitz MR, Hsu TC, Wu X, Fueger JJ, Amos CI, Roth JA. Mutagen sensitivity as a biological marker of lung cancer risk in African Americans. *Cancer Epidemiology, Biomarkers & Prevention* 1995;4(2):99–103.

Stern MP, Bradshaw BS, Eifler CW, Fong DS, Hazuda HP, Rosenthal M. Secular decline in death rates due to ischemic heart disease in Mexican Americans and non-Hispanic whites in Texas, 1970–1980. *Circulation* 1987;76(6):1245–50.

Stern MP, Gaskill SP. Secular trends in ischemic heart disease and stroke mortality from 1970 to 1976 in Spanish-surnamed and other white individuals in Bexar County, Texas. *Circulation* 1978;58(3):537–43.

Strom SS, Wu X, Sigurdson AJ, Hsu TC, Fueger JJ, Lopez J, et al. Lung cancer, smoking patterns, and mutagen sensitivity in Mexican-Americans. *Journal of the National Cancer Institute Monographs* 1995; 18(18):29–33.

Strong JP. Coronary atherosclorosis in soldiers: a clue to the natural history of atherosclerosis in the young. *Journal of the American Medical Association* 1986; 256(20):2863–6.

Sugarman JR, Soderberg R, Gordon JE, Rivara FP. Racial misclassification of American Indians: its effect on injury rates in Oregon, 1989 through 1990. *American Journal of Public Health* 1993;83(5):681–4.

Sugarman JR, Warren CW, Oge L, Helgerson SD. Using the behavioral risk factor surveillance system to monitor year 2000 objectives among American Indians. *Public Health Reports* 1992;107(4):449–56.

Sutherland G, Stapleton JA, Russell MAH, Jarvis MJ, Hajek P, Belcher M, et al. Randomised controlled trial of nasal nicotine spray in smoking cessation. *Lancet* 1992;340(8815):324–9.

Taioli E, Crofts F, Trachman J, Demopoulos R, Toniolo P, Garte SJ. A specific African-American CYP1A1 polymorphism is associated with adenocarcinoma of the lung. Cancer Research 1995;55(3):472-3.

Tolley HD, Crane L, Shipley N. Smoking prevalence and lung cancer death rates. In: Strategies to Control Tobacco Use in the United States—A Blueprint for Public Health Action in the 1990s. Bethesda (MD): US Department of Health and Human Services, Public Health Service, National Institutes of Health, National Cancer Institute. DHHS Publication No. (NIH) 92-3316, 1991.

Tomar SL, Winn DM, Swango PA, Giovino GA, Kleinman DV. Oral mucosal smokeless tobacco lesions among adolescents in the United States. Journal of Dental Research 1997;76(6):1277-86.

Trapido EJ, Chen F, Davis K, Lewis N, MacKinnon JA. Cancer among Hispanic males in South Florida: nine years of incidence data. Archives of Internal Medicine 1994a;154(2):177-85.

Trapido EJ, Chen F, Davis K, Lewis N, MacKinnon JA, Strait PM. Cancer in South Florida Hispanic women: a 9-year assessment. Archives of Internal Medicine 1994b;154(10):1083-8.

Trapido EJ, McCoy CB, Stein NS, Engel S, McCoy HV, Olejniczak S. The epidemiology of cancer among Hispanic women: the experience in Florida. Cancer 1990a;66(11):2435–41.

Trapido EJ, McCoy CB, Stein NS, Engel S, Zavertnik JJ, Comerford M. Epidemiology of cancer among Hispanic males: the experience in Florida. Cancer 1990b;65(7):1657-62.

Tyroler HA, Knowles MG, Wing SB, Logue EE, Davis CE, Heiss G, et al. Ischemic heart disease risk factors and twenty-year mortality in middle-age Evans County black males. American Heart Journal 1984;108(3 Pt 2):738-46.

Udvarhelyi IS, Gatsonis C, Epstein AM, Pashos CL, Newhouse JP, McNeil BJ. Acute myocardial infarction in the Medicare population. Journal of the American Medical Association 1992;268(18):2530-6.

US Bureau of the Census. Current Population Reports: U.S. Population Estimates, by Age, Sex, Race, and Hispanic Origin: 1980 to 1991. Washington (DC): US Government Printing Office. Publication No. P25-1095, 1993.

US Bureau of the Census. State Population Estimates by Age, Sex, Race, and Hispanic Origin: 1990-1994; <http://www/census.gov/population/www/ estimates/st\_sasrh.html>; (accessed: August 21, 1997).

US Department of Health and Human Services. The Health Consequences of Smoking for Women. A Report of the Surgeon General. Rockville (MD): US Department of Health and Human Services, Public Health Service, Office of the Assistant Secretary for Health, Office on Smoking and Health, 1980.

US Department of Health and Human Services. The Health Consequences of Smoking: Cardiovascular Disease. A Report of the Surgeon General. Rockville (MD): US Department of Health and Human Services, Public Health Service, Office on Smoking and Health. DHHS Publication No. (PHS) 84-50204, 1983.

US Department of Health and Human Services. The Health Consequences of Smoking: Chronic Obstructive Lung Disease. A Report of the Surgeon General. Rockville (MD): US Department of Health and Human Services, Public Health Service, Office on Smoking and Health. DHHS Publication No. (PHS) 84-50205, 1984.

US Department of Health and Human Services. The Health Consequences of Involuntary Smoking. A Report of the Surgeon General. Rockville (MD): US Department of Health and Human Services, Public Health Service, Centers for Disease Control, Center for Health Promotion and Education, Office on Smoking and Health. DHHS Publication No. (CDC) 87-8398, 1986a.

US Department of Health and Human Services. The Health Consequences of Using Smokeless Tobacco. Bethesda (MD): US Department of Health and Human Services, Public Health Service, National Institutes of Health. NIH Publication No. 86-2874, 1986b.

US Department of Health and Human Services. The Health Consequences of Smoking: Nicotine Addiction. A Report of the Surgeon General. Rockville (MD): US Department of Health and Human Services, Public Health Service, Centers for Disease Control, Center for Health Promotion and Education, Office on Smoking and Health. DHHS Publication No. (CDC) 88-8406, 1988.

US Department of Health and Human Services. The International Classification of Diseases, Clinical Modification, Volume 1, 9th Revision. Rockville (MD): Department of Health and Human Services, Public Health Service, Health Care Financing Administration. DHHS Publication No. 89-1260, 1989a.